
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

THE SPECTRA OF DES S-BOXES

by

Mathew B. Fukuzawa

June 2014

Thesis Advisor: Pantelimon Stănică
Second Reader: Craig Rasmussen

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

June-20-2014
3. REPORT TYPE AND DATES COVERED

Master’s Thesis July-02-2012 to June-20-2014
4. TITLE AND SUBTITLE

THE SPECTRA OF DES S-BOXES
5. FUNDING NUMBERS

6. AUTHOR(S)

Mathew B. Fukuzawa

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Navy

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

We typically do not associate the field of graph theory with the field of cryptography. In graph theory, the aim is to model relationships
with a graph and examine properties of that graph. The goal of cryptography is to design a communication system over a nonsecure
channel. One connection between the two fields can be found with Cayley graphs and Boolean functions (BF). Accordingly, we can
represent a cryptographic Boolean function with a Cayley graph and examine its properties. In this thesis, we convert the substitution
boxes within the Data Encryption Standard (DES) to Boolean functions and represent them with Cayley graphs. From the Cayley
graph, we analyze the graph spectra and attempt to determine a relationship with the cryptographic properties of the corresponding
Boolean functions. With the spectra, we also make some inferences about the structure of the Cayley graph.

14. SUBJECT TERMS

Data Encryption Standard, Boolean Function, Cayley Graph, Graph Spectra
15. NUMBER OF

PAGES 179
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

THE SPECTRA OF DES S-BOXES

Mathew B. Fukuzawa
Captain, United States Army

B.S., Michigan State University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2014

Author: Mathew B. Fukuzawa

Approved by: Pantelimon Stănică
Thesis Advisor

Craig Rasmussen
Second Reader

Carlos Borges
Chair, Department of Applied Mathematics

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

We typically do not associate the field of graph theory with the field of cryptography. In
graph theory, the aim is to model relationships with a graph and examine properties of that
graph. The goal of cryptography is to design a communication system over a nonsecure
channel. One connection between the two fields can be found with Cayley graphs and
Boolean functions (BF). Accordingly, we can represent a cryptographic Boolean function
with a Cayley graph and examine its properties. In this thesis, we convert the substitution
boxes within the Data Encryption Standard (DES) to Boolean functions and represent them
with Cayley graphs. From the Cayley graph, we analyze the graph spectra and attempt
to determine a relationship with the cryptographic properties of the corresponding Boolean
functions. With the spectra, we also make some inferences about the structure of the Cayley
graph.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Thesis Organization . 2

2 Preliminaries on Algebra and Number Theory 5
2.1 Number Theory . 5

2.2 Abstract Algebra Concepts . 9

3 Block Ciphers 21
3.1 Introduction . 21

3.2 Secure Communications . 21

3.3 Block Ciphers . 24

3.4 The Data Encryption Standard 33

4 Boolean Functions 51
4.1 Boolean Algebra and Operations 51

4.2 Definitions and Representations 53

4.3 Cryptographic Properties of Boolean Functions 58

4.4 Bent Boolean Functions . 65

4.5 Walsh Transform . 66

4.6 Vectorial Boolean Functions . 72

5 Basic Graph Theory 75
5.1 Definitions . 75

5.2 Matrix Representations . 77

5.3 Spectral Graph Theory . 81

5.4 Cayley Graphs . 91

vii

6 Data Encryption Standard (DES) Spectra 97
6.1 Methods . 97

6.2 DES S-Box Spectra . 99

6.3 Relations . 132

6.4 Expanders . 134

6.5 Distance to Linear Functions. 136

7 Extensions on DES Substitution Boxes 139
7.1 Methods . 139

7.2 Results on Propagation Criteria of Degree 2 140

7.3 Results on Strict Avalanche Criteria 141

8 Conclusion 143
8.1 Summary of Results . 143

8.2 Areas for Future Work . 143

Appendix: Thesis Code 145
A.1 Adjacency Matrix Coding . 145

A.2 PC Check Coding . 149

List of References 151

Initial Distribution List 159

viii

List of Figures

Figure 3.1 The Basic Communication Scenario for Cryptography. 22

Figure 3.2 General Structure of a Block Cipher. 25

Figure 3.3 General Structure of a Feistel System. 25

Figure 3.4 Substitution-Permutation Network. 26

Figure 3.5 Cipher Block Chaining Mode. 29

Figure 3.6 s-bit Cipher Feedback Mode on 64-bit Plaintext. 30

Figure 3.7 s-bit Output Feedback Mode on 64-bit Plaintext. 31

Figure 3.8 Counter Mode. 33

Figure 3.9 The DES Algorithm. 37

Figure 3.10 The DES Function f . 40

Figure 4.1 Transeunt Triangle Representation. 57

Figure 5.1 A Graph G on n = 5 Vertices. 76

Figure 5.2 Multigraph and Pseudograph, Respectively. 76

Figure 5.3 A Graph and Its Associated Symmetric Adjacency Matrix. 78

Figure 5.4 A Pseudograph and Its Associated Adjacency Matrix. 79

Figure 5.5 The Petersen Graph. 90

Figure 5.6 Cayley Graph Γ f for the Function 1⊕ x1⊕ x2. 95

Figure 6.1 Cayley Graph Representation for f1 of S-Box 1, Loops Not Present. 102

Figure 6.2 Cayley Graph Representation for f2 of S-Box 1. 108

Figure 6.3 Walsh-Hadamard Spectra of S-Box 4 BFs. 115

ix

Figure 6.4 Walsh-Hadamard Spectra of S-Box 5 BFs. 119

Figure 6.5 Walsh-Hadamard Spectra of S-Box 6 BFs. 123

Figure 6.6 Walsh-Hadamard Spectra of S-Box 7 BFs. 127

Figure 6.7 Walsh-Hadamard Spectra of S-Box 8 BFs. 131

x

List of Tables

Table 2.1 The Cayley Table for Z5. 11

Table 2.2 The Addition and Multiplication Tables for F2. 15

Table 3.1 Analyzing Block Algorithms. 27

Table 3.2 DES Initial Permutation. 38

Table 3.3 DES f Expansion Permutation. 39

Table 3.4 DES f Permutation. 39

Table 3.5 DES First Key Permutation. 41

Table 3.6 DES Key Left Shift Operation. 41

Table 3.7 DES Second Key Permutation. 41

Table 3.8 DES Inverse Initial Permutation. 42

Table 3.9 DES Substitution Box 1 . 43

Table 3.10 DES Substitution Box 1 in Binary Form. 43

Table 4.1 Boolean Sum and Product Tables. 52

Table 4.2 Boolean Function Addition. 52

Table 4.3 Truth Table of a BF. 54

Table 4.4 Representations of a BF. 55

Table 4.5 Conversion from ANF to Truth Table Sequence. 56

Table 4.6 A 3-Variable BF, Correlation Immune of Order k = 1. 60

Table 4.7 A 3-Variable BF Satisfying the SAC. 63

Table 4.8 Truth Table Representation for 1⊕ x1⊕ x2. 69

xi

Table 6.1 First 10 Truth Table Entries for S-Box 1. 98

Table 6.2 ANF and Degree of S-Box 1 BFs. 99

Table 6.3 Walsh Spectra and Walsh-Hadamard Spectra of S-Box 1 BFs. . . . 100

Table 6.4 Cayley Graph Spectra of S-Box 1 BFs. 100

Table 6.5 Laplacian Spectra of Cayley Graphs Associated with S-Box 1 BFs. 101

Table 6.6 Cryptographic Properties of S-Box 1 BFs. 101

Table 6.7 S-Box 2 in Binary Form. 104

Table 6.8 ANF and Degree of S-Box 2 BFs. 105

Table 6.9 Walsh Spectra and Walsh-Hadamard Spectra of S-Box 2 BFs. . . . 106

Table 6.10 Cayley Graph Spectra of S-Box 2 BFs. 106

Table 6.11 Laplacian Spectra of Cayley Graphs Associated with S-Box 2 BFs. 107

Table 6.12 Cryptographic Properties of S-Box 2 BFs. 107

Table 6.13 Properties of Cayley Graphs Associated with S-Box 2 BFs. 109

Table 6.14 S-Box 3 in Binary Form. 109

Table 6.15 ANF and Degree of S-Box 3 BFs. 110

Table 6.16 Walsh Spectra and Walsh-Hadamard Spectra of S-Box 3 BFs. . . . 111

Table 6.17 Cayley Graph Spectra of S-Box 3 BFs. 111

Table 6.18 Laplacian Spectra of Cayley Graphs Associated with S-Box 3 BFs. 112

Table 6.19 Cryptographic Properties of S-Box 3 BFs. 112

Table 6.20 Properties of Cayley Graphs Associated with S-Box 3 BFs. 113

Table 6.21 S-Box 4 in Binary Form. 113

Table 6.22 ANF and Degree of S-Box 4 BFs. 114

Table 6.23 Cayley Graph Spectra of S-Box 4 BFs. 115

Table 6.24 Laplacian Spectra of Cayley Graphs Associated with S-Box 4 BFs. 116

xii

Table 6.25 Cryptographic Properties of S-Box 4 BFs. 116

Table 6.26 Properties of Cayley Graphs Associated with S-Box 4 BFs. 117

Table 6.27 S-Box 5 in Binary Form. 117

Table 6.28 ANF and Degree of S-Box 5 BFs. 118

Table 6.29 Cayley Graph Spectra of S-Box 5 BFs. 119

Table 6.30 Laplacian Spectra of Cayley Graphs Associated with S-Box 5 BFs. 120

Table 6.31 Cryptographic Properties of S-Box 5 BFs. 120

Table 6.32 Properties of Cayley Graphs Associated with S-Box 5 BFs. 121

Table 6.33 S-Box 6 in Binary Form. 121

Table 6.34 ANF and Degree of S-Box 6 BFs. 122

Table 6.35 Cayley Graph Spectra of S-Box 6 BFs. 123

Table 6.36 Laplacian Spectra of Cayley Graphs Associated with S-Box 6 BFs. 124

Table 6.37 Cryptographic Properties of S-Box 6 BFs. 124

Table 6.38 Properties of Cayley Graphs Associated with S-Box 6 BFs. 125

Table 6.39 S-Box 7 in Binary Form. 125

Table 6.40 ANF and Degree of S-Box 7 BFs. 126

Table 6.41 Cayley Graph Spectra of S-Box 7 BFs. 127

Table 6.42 Laplacian Spectra of Cayley Graphs Associated with S-Box 7 BFs. 127

Table 6.43 Cryptographic Properties of S-Box 7 BFs. 128

Table 6.44 Properties of Cayley Graphs Associated with S-Box 7 BFs. 128

Table 6.45 S-Box 8 in Binary Form. 129

Table 6.46 ANF and Degree of S-Box 8 BFs. 130

Table 6.47 Cayley Graph Spectra of S-Box 8 BFs. 131

Table 6.48 Laplacian Spectra of Cayley Graphs Associated with S-Box 8 BFs. 131

xiii

Table 6.49 Cryptographic Properties of S-Box 8 BFs. 132

Table 6.50 Properties of Cayley Graphs Associated with S-Box 8 BFs. 132

Table 6.51 The DES Functions with Ramanujan Cayley Graphs. 136

Table 6.52 The Nearest Affine Functions to the DES S-Box BFs. 138

Table 7.1 Results of PC(2) Check on S-Boxes 1 and 2. 140

Table 7.2 Results of PC(2) Check on S-Boxes 3 and 4. 140

Table 7.3 Results of PC(2) Check on S-Boxes 5 and 6. 140

Table 7.4 Results of PC(2) Check on S-Boxes 7 and 8. 141

Table 7.5 Results of SAC Check on DES S-Boxes. 142

xiv

List of Acronyms and Abbreviations

AES Advanced Encryption Standard

ANF algebraic normal form

ATM automated teller machine

BF Boolean function

CBC cipher block chaining

CFB cipher feedback

CTR counter

DES Data Encryption Standard

DFT discrete Fourier transform

ECB electronic codebook

EFF Electronic Frontier Foundation

FIPS Federal Information Processing Standards

GAC global avalanche criteria

IBM International Business Machines

IP initial permutation

IV initialization vector

LFSR linear feedback shift register

NBS National Bureau of Standards

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

xv

NSA National Security Agency

OFB output feedback

PC propagation criteria

pc personal computer

RSA Rivest-Shamir-Adleman

SAC strict avalanche criteria

S-Box substitution box

SPN substitution-permutation networks

TB terabytes

U.S. United States

WHT Walsh-Hadamard transform

WT Walsh transform

XOR exclusive or

xvi

Acknowledgments

First and foremost, I would like to thank God for allowing me to enjoy the many benefits
of life. My accomplishments would not be possible without Him.

Second, I thank the United States Army, in particular the United States Military Academy
at West Point, for selecting me to attend graduate school and pursue an advanced degree. I
know that this opportunity is not afforded to everyone, and I am grateful for the knowledge
acquired through my studies.

Third, I would like to thank the faculty of the Applied Mathematics department at the
Naval Postgraduate School. Their professionalism, knowledge, and compassion made this
an extremely enjoyable experience. In particular, I am grateful for my thesis advisor, Dr.
Pantelimon Stănică, who not only spent hours laboring through this thesis, but he is by far
one of the most intelligent and brilliant mathematicians I have ever met. I am also thankful
for Drs. Ralucca Gera and Craig Rasmussen, whose help in editing my thesis is appreciated
and whose love of graph theory helped me to enjoy a deeper understanding of the material.
Additionally, I am indebted to Dr. David Canright, whose help in writing Maple code saved
me numerous hours in computation. I also thank Lecturer Bard Mansager, who helped
integrate me into the program and provided mentorship on countless occassions.

Fourth, I thank my peers in the department for their friendship, support, and guidance. Spe-
cial thanks go out to Lieutenant Colonels Randy Boucher and Jon Roginski, who provided
their wisdom in mentoring me through the maze of professional development.

Last but certainly not least, I thank my family for sticking by my side. My children, Hannah
and Luke, are the two accomplishments I am most proud of in life. My wife, Lindsay, is
the most loyal person I have ever met. In addition to being my best friend, she is the best
mother for our children.

RLTW!

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

Cryptography is often a word that the mainstream population associates with code break-
ing or secret military intelligence work performed in an underground bunker—this thinking
no doubt promoted with movies such as The Da Vinci Code, Enigma, and National Trea-

sure. While there is perhaps a part of these stereotypes involved, cryptography is much
more than this. The mathematics behind cryptography are what keep many of our daily
communications secure, i.e., safe enough from prying eyes.

Graph theory is an even more abstract concept for most people. The word graph typi-
cally generates a mental image so ancient that most people would rather not return to mid-
dle school algebra class, where basic functions were plotted on a two-dimensional plane.
Graph theory, however, is an emerging field that studies relationships between objects from
a mathematical perspective.

1.1 Motivation
The motivation for this thesis came from a desire to connect two prominent areas of discrete
mathematics—cryptography and graph theory. The two specific areas linked in this work
are the Data Encryption Standard (DES) and spectral graph theory. DES has been analyzed
extensively since its inception in the 1970s, mainly in its weaknesses for the purpose of
breaking the cipher and improving future algorithms. Some of the prominent researchers
of DES include Carlisle Adams, Eli Biham, Ernest Brickell et al., Don Coppersmith, Marc
Davio, Martin Hellman, Mitsuru Matsui, Adi Shamir, and Stafford Tavares, just to name
a few. On the other hand, spectral graph theory arose circa the same timeframe as the
DES, with the intent of deducing properties of a graph from the spectra of its associated
matrices. By this, we mean that a graph can be represented by a matrix, whose eigenvalues
and eigenvectors can be analyzed to determine information about the graph.

Within cryptography, the author was particularly motivated by the works of Claude Carlet,
Thomas Cusick, and Pantelimon Stănică, who continue to solidify the role of Boolean func-
tions (BFs) in cryptography. While BFs have their place in logic and circuit design, their

1

use in cryptography continues to be a topic of relevance. Within spectral graph theory, the
classic references are written by Norman Biggs, Dragoš Cvetkovíc et al., and Fan Chung.
The more recent work by Stanley Florkowski [1], however, was particularly influential in
directing the author’s focus to something tangible rather than theoretical.

A BF has a graphical representation, known as a Cayley graph, that can be analyzed in
terms of its spectrum. The term spectrum will become clearer in Chapters 4 and 5, but note
that a BF has a representation in terms of a type of spectrum and a graph also has a spectral
representation by its eigenvalues. Anna Bernasconi and Bruno Codenotti linked these two
spectra with their discovery that a relation exists between the Walsh spectrum of a BF and
the spectrum of its associated Cayley graph.

Through this point, no one has attempted to analyze the DES in terms of Cayley graph
spectra. Some have analyzed the aspects of BFs and their use in block ciphers such as
DES, but no one has converted all eight substitution boxes (S-Box) in DES to a set of BFs
and analyzed the spectra of their corresponding Cayley graph adjacency matrices.

1.2 Research Questions
DES is a block cipher utilizing a substitution step via the aforementioned boxes. These
boxes form the nonlinear part of the algorithm and thus contribute to the overall security of
the cipher. With this in mind, we aim to explore the following questions:

1. What are the BF representations of the DES S-Boxes?
2. What are the cryptographic properties of these BFs?
3. What properties of the associated Cayley graphs can be deduced from spectral graph

theoretic techniques?
4. Is there a relationship between the Cayley graph spectra and the cryptographic prop-

erties of the associated BFs?
5. Do the DES S-Box BFs satisfy the propagation criteria (PC) of degree k?

1.3 Thesis Organization
Through the process of investigating the research questions, this thesis is organized in the
following manner:

2

• Chapter 2 discusses the necessary background in algebra and number theory.
• Chapter 3 reviews basic concepts of cryptography and also discusses the organization

of DES.
• Chapter 4 discusses BFs and their application in cryptography.
• Chapter 5 reviews graph theory terminology and introduces spectral graph theory.
• Chapter 6 examines the DES S-Boxes as BFs and their associated Cayley graphs.
• Chapter 7 extends the notion of propagation criteria to the DES BFs.
• Chapter 8 summarizes the results of this thesis and includes areas for future work.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Preliminaries on Algebra and Number Theory

This introductory chapter and the several that follow establish the foundation upon which
the mathematics presented in this thesis depend. The algebra presented here goes beyond
our usual idea of arithmetic, in that we consider familiar operations and sets on an ab-
stract level. This chapter is by no means all-inclusive and the interested reader should
consult some of the more classic texts on abstract algebra by John Fraleigh [2] and Thomas
Hungerford [3].

2.1 Number Theory
Number theory is primarily the study of the set of integers and their properties [4]. These
topics essentially bridge the gap between basic arithmetic and advanced algebra. The defi-
nitions presented in this section are taken from [3].

2.1.1 Divisibility
A set is an unordered collection of objects. We assume that the reader is familiar with some
basic mathematical sets of numbers as follows:

N= {0,1,2,3, . . . ,}
Z= {. . . ,−2,−1,0,1,2, . . . ,}

Q=

{
p
q

: p,q ∈ Z,q 6= 0
}
.

Definition 2.1.1. Let a,b ∈ Z with a 6= 0. Then a divides b, or a is a divisor of b, or b is a
multiple of a if b = ak for some integer k. We denote this by a|b.

Definition 2.1.2. A nonzero integer p is called prime if its only divisors are ±1 and ±p.

EXAMPLE 2.1.3. -5, 3, 11, and 29 are prime but 24 is not.

Definition 2.1.4. Let a,b ∈ Z, not both zero. The greatest common divisor (gcd) of a

and b is the largest d ∈ Z that divides both a and b. Equivalently, d is the gcd of a and b

5

provided that:

(i) d|a and d|b;
(ii) c|a and c|b =⇒ c≤ d. (for all c ∈ Z+)

EXAMPLE 2.1.5. The gcd of 8 and 36 is 4.

Definition 2.1.6. If gcd(a,b) = 1, then a and b are called relatively prime.

EXAMPLE 2.1.7. 9 and 25 are relatively prime.

2.1.2 Congruence
This section continues the concept of divisibility, while also introducing congruence and
congruence classes. Once again, these definitions and concepts are taken from [3].

Definition 2.1.8. Let a,b,n ∈ Z with n > 0. Then aaa is congruent to bbb mmmoooddduuulllooo nnn provided
that n|(a−b) or n|(b−a). Note: This is written as a≡ b (mod n).

EXAMPLE 2.1.9. 23 ≡ 11 (mod 6) since 6|(23− 11). Also, 4 ≡ 13 (mod 3) since
3|(13−4).

If we alter the second part of Example 2.1.9, note that 4≡ 16 (mod 3),4≡ 19 (mod 3),4≡
22 (mod 3), . . . This allows us to define the notion of a congruence class.

Definition 2.1.10. Let a,n ∈ Z with n > 0. The congruence class of aaa mmmoooddduuulllooo nnn (denoted
[a]) is the set of all integers congruent to a modulo n, i.e.,

[a] = {b : b ∈ Z and b≡ a (mod n)}.

EXAMPLE 2.1.11. In congruence modulo 4, [3] = {. . . ,−9,−5,−1,3,7,11,15,19, . . .},
sometimes also denoted [3]4. Also, note that [3]4 = [−1]4. In some circles, [3]4 is also
called the residue class of 3 mod 4.

The next logical question is how many congruence classes are there for a given n? After
all, [3]4 = [−1]4 = [7]4 = [11]4 = · · · , but [2]4 6= [3]4. The answer lies in Definition 2.1.12.

6

Definition 2.1.12. The set of all congruence classes modulo n is a partitioning of the set Z
into n distinct equivalence classes, given by

Zn = {[0], [1], [2], . . . , [n−1]}.

EXAMPLE 2.1.13. Z4 = {[0], [1], [2], [3]}. This means that the elements of Z4 are con-
gruence classes and not integers. Here are the elements of Z4:

[0] = {. . . ,−8,−4,0,4,8,12, . . .}
[1] = {. . . ,−7,−3,1,5,9,13, . . .}
[2] = {. . . ,−6,−2,2,6,10,14, . . .}
[3] = {. . . ,−5,−1,3,7,11,15, . . .}.

The important distinction here is that while each congruence class in Zn has infinitely
many elements [3], there are only a finite number of distinct congruence classes in Zn.
Thus, while it is true that [−3]4 = [1]4 = [5]4 = [9]4, the distinct classes of Z4 are
[0], [1], [2],and[3].

2.1.3 Modular Arithmetic
Ever since grade school, we have performed operations on the integers. The integers,
however, are an infinite set, and the set we are interested in, Zn, is a finite set. We would
like a way to perform operations on Zn, and this is where modular arithmetic emerges.

Returning to the idea of congruence, recall that a≡ b (mod n) ⇐⇒ n|(a−b). This number
n is called the modulus, and in the context of this congruence, mod represents a relation on
the integers [4]. We now introduce some new notation that is closely related.

If we were asked to compute 11
4 in grade school, most of us resorted to long division

2
4
)

11
8
3

.

7

In traditional grade school terminology, 4 is the divisor, 11 is the dividend, 2 is the quotient,
and 3 is the remainder. In the context of abstract algebra and cryptography, the remainder
(sometimes called the residue) is often the object that garners the most attention.

Definition 2.1.14. The notation r = a modmodmod d, where a is the dividend, d is the divisor, and
r is the remainder, represents the smallest positive remainder when a is divided by d.

EXAMPLE 2.1.15. 11 modmodmod 4 = 3, −7 modmodmod 4 = 1, 7 modmodmod 4 = 3, 136 modmodmod 13 = 6. Note:
−7 modmodmod 4 = 1 since −7 = 4(−2) + 1 as a result of the division algorithm (omitted by
assumption of reader knowledge).

The notation modmodmod n is a function, but is closely related to the mod defined in congruence.
The relationship is given by Theorem 2.1.16 [4].

Theorem 2.1.16. Let a,b ∈ Z and let n ∈ Z+ (set of positive integers). Then a ≡ b

(mod n) ⇐⇒ a modmodmod n = b modmodmod n.

Proof: (→) a≡ b (mod n) =⇒ n|(a−b) =⇒ a−b = nk,k ∈ Z(∗).
Then a = nk+ b, so we let r = a modmodmod n. Then ∃q ∈ Z such that a = nq+ r,0 ≤ r < n by
the Division Algorithm. Now substitute a = nq+ r into (*).

nq+ r−b = nk

n(q− k)+ r = b, (q− k) ∈ Z

=⇒ r = b modmodmod n

∴ b modmodmod n = a modmodmod n

(←) Let r = a modmodmod n= b modmodmod n. Then a= nq1+r and b= nq2+r. Solving these equations
for r, we have r = a−nq1 and r = b−nq2. Therefore,

a−nq1 = b−nq2

a−b = nq1−nq2

a−b = n(q1−q2), (q1−q2) ∈ Z

=⇒ n|(a−b)

=⇒ a≡ b (mod n)

8

Armed with this knowledge, we can now define arithmetic on Zn. The two operations that
we are concerned with are addition and multiplication.

Definition 2.1.17. Addition and multiplication in Zn are defined by

[a]n +[b]n = [a+b]n = (a+b) modmodmod n

[a]n · [b]n = [ab]n = (a ·b) modmodmod n.

EXAMPLE 2.1.18. In Z6, [3]+ [2] = [5], [4]+ [5] = [3], and [3] · [2] = [0].

2.2 Abstract Algebra Concepts
The remaining portion of this chapter will focus on the abstract algebra concepts at the
heart of cryptography. For a truly deep understanding of these topics, the reader should
consult an algebra reference with a cryptographic focus such as Fraleigh [2] or Rudolf Lidl
and Harald Niederreiter [5].

2.2.1 Binary Operations
We first need to define a few operations on mathematical sets. It is assumed that the reader
has some basic knowledge of set theory.

Definition 2.2.1. Let A and B be sets. The Cartesian product of A and B is given by the
set A×B, defined [2] as

A×B = {(a,b) : a ∈ A and b ∈ B}.

EXAMPLE 2.2.2. If A = {a,b} and B = {y,z}, then A×B = {(a,y),(a,z),(b,y),(b,z)}.

For the purposes of upcoming material, we will often be concerned with the Cartesian
product of two sets which are the same, i.e., A×A. Consider Z, the set of integers, and the
familiar operation of addition. If we take two arbitrary integers, say u and v, and perform
addition on them, we get back another integer w (of course w may or may not be equal to u

or v). We have just defined, albeit informally, a binary operation on Z.

Definition 2.2.3. A binary operation [2] on a nonempty set S is a function mapping S×S

into S, given mathematically as f : S×S→ S.

9

This operation is symbolized by ∗, to indicate any general function satisfying the definition.
For example, addition is not the only binary operation on Z (multiplication as well). In
other words, assuming (a,b) ∈ S×S, a binary operation ∗ on S assigns (a,b) to a∗b ∈ S.

2.2.2 Groups
We now turn our attention to one of the oldest algebraic systems in mathematics—groups.
Group theory, or the study of groups, was introduced by Évariste Galois. In this sense,
group theory is also known as Galois theory. Galois was a 19th century French mathemati-
cian who lived just 20 years, meeting his fate following a pistol duel. Despite spending the
majority of his teen years trying to gain acceptance into school and failing, Galois did man-
age to record his discoveries. One of these results involved the solvability of an algebraic
equation of high order using radicals; the method became known as group theory [6].

Definition 2.2.4. A group is a nonempty set G together with a binary operation ∗ that
satisfies the following axioms:

1. Closure: If a,b ∈ G, then a∗b ∈ G.1

2. Associativity: (a∗b)∗ c = a∗ (b∗ c) ∀ a,b,c ∈ G.
3. Existence of an identity: ∃ e ∈ G such that ∀ a ∈ G, a∗ e = a = e∗a.
4. Existence of an inverse: ∀ a ∈ G, ∃ a′ ∈ G such that a∗a′ = a′ ∗a = e.

A group is abelian (sometimes called commutative) if it also satisfies the following
axiom:

5. Commutativity: a∗b = b∗a ∀ a,b ∈ G.

EXAMPLE 2.2.5. 〈Z,+〉 is an abelian group. The sum of any two integers is another
integer; the addition is associative. The identity element in Z is 0 and the inverse element
is just the element of opposite sign. Also, addition of integers is commutative.

EXAMPLE 2.2.6. 〈{[0], [1], [2], . . . , [n−1]}, [a+b]n〉 is a group under addition modulo n.

1Some texts do not include this axiom since closure is an inherent property of a binary operation.

10

EXAMPLE 2.2.7. The set of all n×n matrices with real entries under matrix multiplica-
tion is not a group. In particular, the zero matrix has no inverse.

With regard to Examples 2.2.5 and 2.2.6, 〈Z,+〉 is an example of an infinite group because
it contains infinitely many elements. The second example is a finite group because it con-
tains a finite number of elements. The number of elements in a finite group G is the order
of the group [5]. For those familiar with set theory, this term is analogous to the cardinality

of a finite set. We also sometimes refer to a group under addition as an additive group,
while a group whose binary operation is multiplication is called a multiplicative group.

A convenient way to display a group under its binary operation is via the Cayley table,
sometimes also called a group table or addition/multiplication table. In this table, the ele-
ments of a group G are placed along the top row and leftmost column, and the (i, j) entry
in this table represents ai ∗b j. For example, Table 2.1 displays the group Z5 under addition
modulo 5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]
[1] [1] [2] [3] [4] [0]
[2] [2] [3] [4] [0] [1]
[3] [3] [4] [0] [1] [2]
[4] [4] [0] [1] [2] [3]

Table 2.1: The Cayley Table for Z5.

There is much more detail in the realm of group theory, but that is beyond the knowledge
required for this thesis. The interested reader should consult [2, 5] for a deeper look.

2.2.3 Rings
We now move on to the concept of a ring, in which two binary operations and additional
axioms are now defined. While the origins of a ring date back to the mid-19th century, the
formal definitions of a ring and ring theory did not appear until the early 1900s. William R.
Hamilton first described a complex number system coined the quaternions, in which he at-
tempted to apply vector algebra to 3-dimensional space. This formed the basis upon which

11

subsequent mathematicians attempted to study finite commutative and noncommutative al-
gebras. Israeli mathematician Abraham Fraenkel and Japanese Shezo Sono are credited
with defining the concept of a ring in 1914 and 1917, respectively. Emmy Noether and
Emil Artin formally theorized rings in the 1920s, and ring theory took off from there with
the works of Wolfgang Krull and others [6, 7].

Definition 2.2.8. A ring 〈R,+, ·〉 is a nonempty set R together with two binary operations
+ and ·, which we call addition and multiplication, such that the following axioms are
satisfied [2, 5]:

1. 〈R,+〉 is an abelian group.
2. Multiplication is associative, i.e., (a ·b) · c = a · (b · c) ∀ a,b,c ∈ R.
3. The distributive laws hold, i.e., ∀ a,b,c,∈ R, we have a · (b+ c) = a · b+ a · c and

(b+ c) ·a = b ·a+ c ·a.

EXAMPLE 2.2.9. The set of integers Z is a ring with the usual addition and multiplication.
Verification of the axioms is left to the reader.

Some rings have additional special properties that are worth noting. A ring is commutative

if the multiplication operation · is commutative. Also, a ring is called a ring with identity

if R contains a multiplicative identity, i.e., there exists an element e such that a · e = a =

e ·a ∀ a ∈ R. Thus, Z is a commutative ring with identity [5].

EXAMPLE 2.2.10. The set of even integers with the usual operations is a ring; in fact it
is a commutative ring. The set of odd integers is not a ring since closure under addition is
not satisfied.

EXAMPLE 2.2.11. The sets Q,C, and R are all commutative rings with identity.

2.2.4 Fields
The interesting thing about fields is that mathematicians were studying them well before
the formal concept of a ring was defined, yet we often define fields as a special type of

12

ring. Niels Abel and Galois inferred the idea of a field with their work on the solvability
of equations circa the 1830s; it was not until 1879, when Richard Dedekind published an
explicit definition for a field, that stimulation in the subject arose. Dedekind focused on
infinite sets, whereas Heinrich Weber discussed the notion of finite fields in 1893. It was
Galois, however, that perhaps influenced the development of field theory the most. As a
result, finite fields are also known as Galois fields [2, 6].

Definition and Examples

Definition 2.2.12. A field F is a commutative ring R with identity e 6= 0 also satisfying the
following axiom [3]:

? ∀ a 6= 0 ∈ R, the equation ax = e has a solution in R [every nonzero element has a
multiplicative inverse].

An alternative definition of a field given by Fraleigh [2] and Lidl and Niederreiter [5] is
perhaps more appealing to the mathematically inclined:

Definition 2.2.13. (i) A ring with a multiplicative identity is called a ring with identity;
the identity is often called unity.

(ii) A ring in which multiplication is commutative is called a commutative ring.
(iii) A ring is an integral domain if it is a commutative ring with identity e 6= 0 in which

ab = 0 =⇒ a = 0 or b = 0.
(iv) A ring is called a division ring if the nonzero elements of R form a group under

multiplication (every nonzero element has a multiplicative inverse in R).
(v) A commutative division ring is called a field.

Breaking down Definition 2.2.13, a field is a ring on which two binary operations (called
multiplication and addition) are defined, also containing a unique zero element and identity
e 6= 0. Since a field is a commutative division ring, its nonzero elements form an abelian

13

group under multiplication. Part (iii) of the definition guarantees that a field has no zero
divisors, since all nonzero elements have a multiplicative inverse.

EXAMPLE 2.2.14. Q, R, and C are all fields. However, Z is not a field since not all
nonzero elements have a multiplicative inverse, e.g., 3x = 1 has no solution in Z.

EXAMPLE 2.2.15. In general, Zn is not an integral domain and thus not a field, but when
n = p a prime, Zp is an integral domain and thus a field (proof omitted). For example, in
Z4 we have 2 ·2 = 0 but 2 6= 0.

Finite Fields
Example 2.2.15 from above illustrates a concept which is at the heart of cryptography, that
of the finite field. A finite field is a field that contains only finitely many elements. While
the theory of finite fields is very deep and mathematical, the background presented here is
enough to give the reader a baseline of knowledge. Lidl & Niederreiter [5] devote an entire
text to the subject.

Recall that we denoted the set of all congruence classes modulo n as Zn. By noting that
this set is also the set of possible remainders when a positive integer is divided by n, we
can also refer to this as the set of residue classes modmodmod n. We now define an ideal, which is
a subring J of a ring R such that for all a ∈ J and r ∈ R we have ar ∈ J and ra ∈ J. Note,
for J to be a subring, J must be closed under + and · and also satisfy the ring axioms.
An ideal J partitions a ring R into disjoint sets (called cosets); these disjoint sets are the
residue classes modulo J. The entire set of residue classes modulo J form a ring with the
operations induced from the operations of R (proof omitted), called the residue class ring

of R modulo J, symbolized by R/J [5]. Depending on the source, some texts also call this
R/J the factor ring (or quotient ring) of R by J [2].

When we consider our example from above, Zn, the residue class ring Z/(n) contains the
following elements:

[0] = 0+(n), [1] = 1+(n), . . . , [n−1] = n−1+(n).

Instead of (n), some texts also use the notation nZ to represent the ideal of Z in the factor
ring Z/nZ. The notation (n) is the same as nZ; it is the principal ideal generated by n,

14

i.e., the set of all multiples of n in Z. While not shown here, Zn is isomorphic to Z/nZ,
i.e., there is an injective and surjective homomorphism between the two (preserving the
respective operations). Since Zn is a field if and only if n = p a prime, then the factor ring
Z/nZ is a field if and only if n is a prime [2].

The residue class fields Z/(p) where p is a prime form the basis for the finite fields used
in this thesis. We would like a more convenient representation and usage of these residue
class fields. A mapping is a convenient way to transfer the structure from one set to an-
other [5]. The set without structure will be denoted by GF(p) = {0,1, . . . , p− 1}, where
this is a set of integers with p elements. Let φ : Z/(p)→ GF(p) be a bijective mapping
defined by φ([a]) = a for a = 0,1, . . . , p− 1. It is not too difficult to show that φ is also
a homomorphism, i.e., φ([a] + [b]) = φ([a])+ φ([b]) and φ([a][b]) = φ([a])φ([b]). Since
this mapping is a bijective homomorphism, it can also be called an isomorphism, whereby
the structure on GF(p) is induced by φ . Moreover, since Z/(p) is a field when p is prime,
then GF(p) is a field induced by φ . Note, we are not stating that the elements of Z/(p) and
GF(p) are the same, only that the structure of a finite field is transferred between the two.

The finite field GF(p) is so important that it is called the Galois field of order p after
É. Galois. For conciseness, Galois fields are also denoted by Fp and will henceforth be
referred to as such in this thesis. Since the elements of Fp are ordinary integers, arithmetic
in the field is carried out modulo p.

Consider the following example for F2 = {0,1} in Table 2.2.

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Table 2.2: The Addition and Multiplication Tables for F2, after [5].

There are a few more things to say about Galois fields, but first we need a short buildup.
We define the characteristic of a ring as the least positive integer n such that na = 0 for
all elements a in the ring (if such n exists, otherwise the ring has characteristic 0) [2]. For
example, the ring Zn has characteristic n and the ring Q has characteristic 0.

15

Let F be a field and K a subfield of F (a subset that is also a field and closed under the usual
operations). Then F is an extension field of K [5]. Now, if E is an extension field of F with
dimension n as a vector space over F (see next subsection), then E is a finite extension of

degree n over F . If a finite field F has q elements, then E has qn elements assuming E

is a finite extension of degree n over F . We can also regard E as a vector space (see next
section) of dimension n over F .

If E is a finite field of characteristic p a prime, then E contains exactly pn elements for some
positive integer n [2]. This result follows from the previous paragraph. This result implies
for every prime p and every positive integer n, there exists exactly one finite field with pn

elements, i.e., GF(pn) = Fpn exists, and moreover, it is unique up to an isomorphism.

Polynomials
When we think of our usual idea of a polynomial, we remember something like x2+2x+1
from high school. In general, a polynomial can be written as a0 +a1x+ · · ·+anxn, or as a

sum
n
∑

i=0
aixi. We now expand this concept to rings.

Let R be a ring. A polynomial over R is an expression of the form

f (x) =
n

∑
i=0

aixi = a0 +a1x+ · · ·+anxn, (2.1)

where n is a nonnegative integer and the ai are elements of R [5]. The symbol x is no longer
called a variable, but rather an indeterminate; x does not belong to R. Since R is a ring, we

also need to define its two binary operations, addition and multiplication. Let f (x)=
n
∑

i=0
aixi

and g(x) =
n
∑

i=0
bixi. The sum of f (x) and g(x) is given by f (x)+g(x) =

n
∑

i=0
(ai+bi)xi. Now,

let f (x) =
n
∑

i=0
aixi and g(x) =

m
∑
j=0

b jx j. Then the product is given by f (x)g(x) =
n+m
∑

k=0
ckxk,

where ck = ∑
i+ j=k

aib j.

This ring R together with the addition and multiplication operations above is called the
polynomial ring over R [5] and is denoted by R[x].

EXAMPLE 2.2.16. In F2[x], the expansion of (x + 1)2 is (x + 1)2 = (x + 1)(x + 1) =
x2 +2x+1 = x2 +1 and in general, (x+a)2n

= x2n
+a2n

.

16

For cryptography purposes, we are more interested in polynomials over fields but the ap-
proach is somewhat different. Let F be a field. Then F [x] is an integral domain but not a
field since x does not have a multiplicative inverse in F [x], i.e., in F [x], x f (x) = 1 has no
solutions [2]. We can get around the fact that F [x] is not a field because every integral do-
main has a field of quotients. This field of quotients is denoted by F(x) and consists of all
quotients of the form f (x)/g(x), with f (x) and g(x) polynomials in F [x] and g(x) 6= 0 [2].
F(x) is also called the field of rational functions over F ; its elements are called rational

functions.

EXAMPLE 2.2.17. In the most general sense, F [x] is the ring of polynomials with coeffi-
cients in some arbitary field F . F5[x] consists of all polynomials whose coefficients are in
F5.

We now proceed to develop and define two more concepts which are essential to crypto-
graphic functions–irreducibility and primitivity. Since F [x] has a field of quotients, it is
natural to expect operations such as division and factoring are present. In fact, they are
and just like with integers, the division algorithm can be applied to polynomials in F [x].
Likewise, a greatest common divisor also exists in F [x] as well as a least common multiple.
The notion of a prime polynomial also exists and the concept is analogous to the integers.
Two polynomials f and g are relatively prime if gcd(f ,g) = 1. Similarly, a polynomial
p(x) is prime if it has the property that it divides the product f (x)g(x) only when it divides
one of f (x) or g(x). In other words, the only factors of p(x) have either the same degree as
p or degree zero.

EXAMPLE 2.2.18. p(x) = x2 + 1 is prime in R[x] since it does not factor into a product
f (x)g(x), where f (x) and g(x) are polynomials with real coefficients. It is, however, not
prime (i.e., composite) in C[x]!

Definition 2.2.19. A polynomial p ∈ F [x] is irreducible over FFF (or irreducible in F [x], or
prime in F [x]) if p has positive degree and p = bc with b,c ∈ F [x] implies that either b or c

is a constant polynomial.

In other words, an irreducible polynomial cannot be factored further except for a trivial
factorization, i.e., p cannot be expressed as a product gh both of lower degree than the

17

degree of p [2, 5]. It should be apparent that the prime elements of F [x] are the irreducible
polynomials over a field F . Example 2.2.20 illustrates the idea of irreducibility.

EXAMPLE 2.2.20. x2−2 ∈Q[x] is irreducible over the field Q of rationals since it has no
zeros in Q. However, x2−2 is reducible over R since it factors in R[x] into
(x+
√

2)(x−
√

2).

With the notion of an irreducible polynomial, we can now develop the idea of primitive

polynomials. First we need to define the order of a nonzero polynomial over a finite field,
taken from Lidl et al.

Definition 2.2.21. Let f ∈ Fq[x] be a nonzero polynomial. If f (0) 6= 0, then the least
positive integer e for which f (x)|(xe−1) is called the order of f and denoted by ord(f) or
ord(f (x)).

EXAMPLE 2.2.22. Let f (x) = x4 +x3 +1 be a polynomial in F2[x]. The order of f is 15,
since (x4 + x3 +1)|(x15−1). Note that, since we are in F2, subtraction performs the same
as addition and we may perform long division to check divisibility.

(x4 + x3 +1)|(x15−1) =⇒ x15 +1
x4 + x3 +1

= x11 + x10 + x9 + x8 + x6 + x4 + x3 +1

Now we can present the notion of a primitive polynomial. Primitive polynomials are used
in multiple cryptographic applications, such as generating maximal-period linear feedback
shift registers (LFSRs) or pseudorandom numbers. Primitive polynomials are also used in
many well-known algorithms such as Advanced Encryption Standard (AES).

Definition 2.2.23. A polynomial f ∈ Fq[x] of degree m is a primitive polynomial over the
field Fq if f is monic, f (0) 6= 0, and ord(f) = qm−1.

Note that in Definition 2.2.23 [5], the term monic means that the coefficient of the highest
degree term is one. A primitive polynomial is a monic, irreducible polynomial over Fq and
has a root α ∈ Fqm that generates the entire multiplicative group of Fqm . This is why many
applications such as AES use primitive polynomials —they generate the entire Galois field
used in the algorithm. Although it is true that a primitive polynomial is irreducible, it is not
always true that an irreducible is primitive.

18

EXAMPLE 2.2.24. The polynomial in Example 2.2.22 is irreducible and primitive. As
a check, f is monic since the coefficient of x4 is one. We now check that 0 is not a zero

(aka root) of the polynomial, and we see that f (0) = 0+0+1 = 1. Finally, we require that
ord(f) = 24−1, which was verified as 15 previously.

2.2.5 Vector Spaces
Most readers are familiar with the concept of a vector space from a typical course in linear
algebra. In a common text such as Steven Leon [8], a vector space is defined with the
natural Euclidean approach. A vector space has two defined operations: addition and scalar
multiplication, whereby these operations can be performed on any vector within the vector
space. Consider the familiar two-dimensional world, or x− y plane denoted by R2. Any
two vectors in R2 can be added together to produce another vector in R2; any vector in
R2 can be multiplied by a scalar in R to also yield another vector in R2. This is just one
example of a vector space in which closure of addition and scalar multiplication is satisfied.
Formally, Leon defines a vector space in the following manner.

Definition 2.2.25. Let V be a set on which the operations of addition and scalar multipli-
cation are defined. By this we mean that, with each pair of elements x and y in V , we
can associate a unique element x+ y that is also in V , and with each element x in V and
each scalar α ∈ R, we can associate a unique element αx in V . The set V , together with
the operations of addition and scalar multiplication, is said to form a vector space if the
following axioms are satisfied:

A1. x+y = y+x for any x and y in V .
A2. (x+y)+ z = x+(y+ z) for any x,y and z in V .
A3. There exists an element 0 in V such that x+0 = x for each x ∈V .
A4. For each x ∈V , there exists an element −x in V such that x+(−x) = 0.
A5. α(x+y) = αx+αy for each scalar α and any x and y in V .
A6. (α +β)x = αx+βx for any scalars α and β and any x ∈V .
A7. (αβ)x = α(βx) for any scalars α and β and any x ∈V .
A8. 1 ·x = x for all x ∈V .

This is a fine definition for purposes of linear algebra, but it can be generalized using the
concepts of groups and fields.

19

Definition 2.2.26. [2] Let F be a field. A vector space over F is an additive abelian group
V together with a scalar multiplication of each element of V by each element of F on the
left, such that for all a,b ∈ F and α,β ∈V , the following conditions are satisfied:

V1. aα ∈V .
V2. a(bα) = (ab)α .
V3. (a+b)α = (aα)+(bα).
V4. a(α +β) = (aα)+(aβ).
V5. 1α = α .

In Definition 2.2.26, the elements a,b of an arbitrary field F are scalars, while α,β are
vectors.

EXAMPLE 2.2.27. The additive abelian group of all 2×2 matrices over the reals with the
usual scalar multiplication involving matrices is a vector space over R.

EXAMPLE 2.2.28. The complex numbers C form a vector space over the real numbers.

The dimension of a vector space V is the number of linearly independent vectors needed
to span or generate V . With this in mind, the dimension of R2 is two. A more applicable
example to Definition 2.2.26 follows.

EXAMPLE 2.2.29. Let F be a field with E an extension field of F . Also, let α ∈ E, where
α is an algebraic over F . By algebraic, we mean that there exists a non-zero polynomial
f (x) ∈ F [x] such that f (α) = 0. Now suppose that the degree of α over F is n. Then we
can express the vectors in F(α) as a linear combination such that

{
1,α,α2, . . . ,αn−1} are

linearly independent in F(α) over F . This set of vectors also spans F(α), and thus it has
dimension n.

20

CHAPTER 3:
Block Ciphers

This chapter introduces cryptography and the necessary information on block ciphers. In
particular, an overview of the DES is presented with an eye towards each S-Box within
the algorithm. For more information on block ciphers and other symmetric algorithms, the
reader should refer to [9–11].

3.1 Introduction
Cryptography is the process of designing communication systems over nonsecure channels.
The word cryptography is often used interchangeably with cryptology, though the latter is
technically the general word for the study of communication over nonsecure channels [12].
Historically, we might say that the origins of cryptography date back to primitive man and
his method of communication with others. The first true example of cryptography, how-
ever, probably lies with the ancient Egyptians and their use of hieroglyphics. No matter
the civilization nor the timeline, the need to protect information has always been present.
The latter half of the 20th century introduced the digital computer, which ultimately made
cryptography a required part of everyday life. Unfortunately, as technology advances, so
do the means by which adversaries break these systems (known as cryptanalysis). As
stated in [11]: “Cryptography is the only practical means for protecting the confidential-
ity of information transmitted through potentially hostile environments, where it is either
impossible or impractical to protect the information by conventional physical means.”

3.2 Secure Communications
The need for cryptographic algorithms to protect data arises from the basic communication
scenario between two (or multiple) people or entities. Cryptography introduces an algo-
rithm or method to convert a message into an encrypted message and vice versa, so that
two parties can communicate securely and not have their message read by another party.

21

3.2.1 Background
Consider the following scenario referenced in Figure 3.1. In this classic figure, two parties,
Alice and Bob, want to communicate with each other. Meanwhile, a potential adversary
named Eve (Eve for eavesdropper), wants to intercept this message.The Basic Secure Communication ScenarioThe Basic Secure Communication Scenario

Alice Bob

Eve

Encrypt Decrypt

Encryption
Key

Decryption
Key

ciphertext

plaintext

Alice communicates with Bob via the channel.
Eve is evil and eavesdrops. Her goals:
– Read the message
– Determine the keys
– Corrupt the message to Bob gets something different than what Alice sent
– Pretend to be Alice and fool Bob

Figure 3.1: The Basic Communication Scenario for Cryptography, after [12].

Alice could send Bob a message in the clear, i.e., unencrypted, but Eve could easily in-
tercept it. Instead, Alice creates a plaintext message and encrypts it using an encryption
key. Once encrypted, the message is now referred to as ciphertext. Bob receives the cipher-
text and decrypts it back to plaintext using a decryption key. Keeping the contents of the
message secure from Eve not only depends on the encryption/decryption method used, but
more so on the keys. Encryption and decryption are encompassed in a cipher.

The algorithm and the keys together comprise a cryptosystem. With the exception of the
one-time pad2, every cryptosystem can theoretically be broken. Thus, great care is taken to
create a cryptosystem that is mathematically too difficult to break in any reasonable amount
of time. Claude Shannon introduced the concepts of confusion and diffusion in regards to
good cryptosystem design. Confusion means that it is too difficult for an adversary to detect
the outcome of the ciphertext from a one character change in the plaintext. In an algorithm
with good confusion, the relationship between the plaintext/key and the ciphertext is often
complex. On the other hand, diffusion means that few changes in the plaintext create many
changes in the ciphertext. Thus, good diffusion implies that Eve needs a large portion of
ciphertext to determine the algorithm and conduct a statistical attack [13].

2In a one-time pad, the plaintext is encrypted one character at a time with a random nonrepeating set of
key characters. The key characters are added to the plaintext characters modulo 26; the key is only used once
and then discarded [9].

22

3.2.2 Types of Algorithms
There are two types of cryptographic algorithms: symmetric and public key. In a symmetric

algorithm, the encryption and decryption keys are known to both sender and receiver [12].
Most of the time the keys are the same and other times they are closely related by a simple
transformation. Examples of symmetric algorithms include the DES and the AES. In
contrast, a public key algorithm uses two distinct keys. One of these keys, called the public

key, is freely available to any party. The other key, called the private key, is kept secret; each
party has their own private key that corresponds to the public key. It is virtually impossible
for an adversary to deduce the private key in a reasonable amount of time given the public
key. In a typical system, the encryption key is the public key and the decryption key is
the private key [9]. The most widely known public key cryptosystem is Rivest-Shamir-
Adleman (RSA).

Symmetric algorithms can be classified as block ciphers or stream ciphers. In a block
cipher, the message is partitioned into predetermined block sizes, fed through the algorithm,
output in blocks, and concatenated for the receiver to interpret. In a stream cipher, each
character in the plaintext is encrypted separately [13]. Section 3.3 will cover more on the
topic of block ciphers, in particular DES.

3.2.3 Keys
The encryption/decryption keys are extremely important to the security of a cipher. Algo-
rithms are generally public knowledge, therefore anyone with a brain can figure out how a
plaintext message moves through the algorithm. However, it is a combination of the algo-
rithm complexity and key length that ultimately determine how secure a cryptosystem will
be.

If Eve knows the key, then she can read all messages encrypted with that key. Eve could
conduct an exhaustive attack by trying all possible keys, but if the key is long enough, this
could be infeasible. Therefore, it is generally true that a longer key is more difficult to
break than a shorter one. For example, AES uses a variable key length of 128, 192, or 256
bits, where each bit is either a zero or one. Thus, the key space for a 256 bit AES key is 2256

possible keys, or roughly 1.1579×1077. For some perspective, the Earth is approximately
4.54 billion years old (4.54× 109) while the universe is roughly 13.8 billion years old.

23

From a purely theoretical standpoint, let us assume we have a processor that can perform
109 encryptions per second. If a collection of 1000 processors attempts an exhaustive
search of all 2128 ≈ 3.4×1038 keys for a 128-bit key, then it would take roughly 1019 years
to search this space. Even if we had access to one of the world’s fastest computers in China
that operates at 33.86× 1015 floating point operations per second [14], at 300 operations
per encryption this would take roughly over 95 quadrillion years to exhaust the key space.

3.3 Block Ciphers
The history of the term block cipher is somewhat vague. Many classical and historical
cryptosystems are deemed block ciphers, but the modern-day idea of a block cipher was
not cemented until the 1970s. Some examples of early block ciphers include: Vigenère (≈
1550), Playfair (1854), and Hill (1929). In 1973, the National Bureau of Standards (NBS),
the current National Institute of Standards and Technology (NIST), issued a request for
a cryptosystem to become the new national standard for encryption. NBS required this
standard to be a block cipher, essentially initiating the formal study of block ciphers. DES
and AES are the two most common examples of block ciphers.

3.3.1 Definition and Design
Formally, a block cipher is a pair of functions [15] E and D:

E : Vk×Vn→ Vn (3.1)

D : Vk×Vn→ Vn. (3.2)

In other words, a block of plaintext of bit length n is combined with a key of bit length
k, producing an encrypted block of ciphertext of bit length n. Similarly, the decryption
function takes an n-bit ciphertext with a k-bit key and maps the combination into an n-bit
plaintext. In traditional math lingo, E and D undo each other and are thus inverses.

Most modern block ciphers operate in iterated fashion, meaning the blocks of plaintext pass
through a round function f for a set number of rounds. The purpose of this is to increase
algorithm security by repeatedly using the same function. Each round uses a different
key derived from the previous one, further increasing the security. Figure 3.2 depicts the
situation just described.

24

3. The algorithm must be capable of supporting key-block combinations 128-128, 192-128, and
256-128 bits.

The evaluation criteria of the candidates were security, design (ease of software and hardware
implementation), implementation attacks, flexibility. Five finalists were chosen: MARS (proposed
by IBM), RC6 (proposed by RSA Laboratories), Rijndael (proposed by Joan Daemen, Vincent
Rijmen), Serpent (proposed by Ross Anderson, Eli Biham, Lars Knudsen), and Twofish (pro-
posed by Bruce Schneier and his team at Counterpane Systems).

2 Introduction

A block cipher acts on the plaintext, which is divided into separate blocks of fixed size (for example,
32, 56, 64, 128, etc.). Precisely, a block cipher is a pair of functions (Vm := GF (2)m)

E : Vk × Vn → Vn

D : Vk × Vn → Vn.

E: the encryption function maps an n-bit plaintext into an n-bit ciphertext (block size), using a
k-bit encryption key;
D: the decryption function maps an n-bit ciphertext into an n-bit plaintext, using a k-bit decryption
key.
For a key in the keyspace Vk define EK(P) = E(K,P), DK(P) = D(K, P). We must have DK =
E−1

K .
• Iterated Block Ciphers: they repeat a sequence of simple operations (called round func-

tions) a certain number of times (called rounds).

Key Schedule

KrK1

Plaintext Ciphertext

Key K

R1 Rr

Figure 1: General structure of a block cipher

3 Block Ciphers’ Modes of Operation

The electronic codebook (ECB) mode (see Figure 2) uses the simplest idea, that is, to have the
message partitioned into several blocks of n-bit length (recent work is being done on devising block
ciphers of flexible length), padding if necessary, and then to apply the cipher to each block. The
advantage of this mode is that one can decrypt the n-bit blocks independently, in parallel. Thus,
if one error occurs in transmission or encryption, that error affects only that particular block,
where the error occurred. However, that is also a disadvantage, since this mode does not hide data
patterns, if one uses a key for more than one block, since multiple copies of the same plaintext
block map to the same ciphertext block.

The cipher block chaining (CBC) mode encrypts the first block using the ECB method applied
to the xor of the first block with a block IV . The i-th ciphertext block is obtained by applying the
block cipher to the i-th plaintext block and the (i−1)-th ciphertext block (see Figure 3). Thus, the
ciphertext Ci is defined by C0 = IV (stands for initialization vector), Ci = EK(Pi ⊕ Ci−1). The

2

Figure 3.2: General Structure of a Block Cipher, from [15].

There are various ways to design a cryptosystem to achieve an adequate level of security
in encryption. The two main design techniques are the Feistel system and substitution-

permutation networks (SPN). A Feistel system is depicted in Figure 3.3, while SPN is
displayed in Figure 3.4.

Figure 3.3: General Structure of a Feistel System, from [16].

The Feistel system is named after the German born cryptographer Horst Feistel. In the

25

Feistel cipher, the first round is initiated with a split of a plaintext block into two halves,
called the left and right. The right side and the round key pass through the round function,
the result of which is then combined with the left side via the logical exclusive or (XOR)
(in binary, this is equivalent to addition modulo 2). The result of this XOR then swaps with
the preceding right side and becomes the new right side for the next round. This process
then iterates over a set number of rounds. After the last round, the resulting left and right
parts become the ciphertext block. Since this process must be invertible, decryption works
in the same manner but in the the reverse direction.

Figure 3.4: Substitution-Permutation Network, after [15].

In the SPN, the encryption algorithm makes use of two basic cryptographic operations:
substitution and permutation. SPNs are a type of product cipher because they involve more
than one transformation, i.e., substitution and permutation, essentially mixing confusion
and diffusion over and over again. The plaintext block and the initial key are combined
via XOR, the result of which is then subdivided into smaller blocks and passed through a
substitution step. Each of the boxes in Figure 3.4 labeled with an S is known as a substi-

26

tution box (S-Box), and these introduce confusion in the cipher. In the substitution step,
each character is replaced with another character. A permutation step follows substitution,
in which the bits are permuted or re-ordered. Permutation generates diffusion in the cipher.
Following the permutation step, the resulting block is combined with the next round key
via XOR and the process iterates.

3.3.2 Advantages and Disadvantages
One of the primary drawbacks to any symmetric algorithm is key distribution [13]. If Alice
wants to talk to Bob using a symmetric algorithm, then Alice and Bob need to have the
same key. If Alice and Bob are on separate continents, however, key distribution could
prove to be difficult. In addition, if Alice wants to talk with Charles, then she needs a
different key than the one used to converse with Bob. Key generation is also an issue, but
this process will be discussed more in depth in Section 3.4. Block ciphers also present their
own advantages and disadvantages as displayed in Table 3.1.

Block Encryption Algorithms

Advantages
• High diffusion. Information from the plaintext is diffused into sev-

eral ciphertext symbols. One ciphertext block may depend on sev-

eral plaintext letters.

• Immunity to insertion of symbols. Because blocks of symbols are

enciphered, it is impossible to insert a single symbol into one block.

The length of the block would then be incorrect, and the decipher-

ment would quickly reveal the insertion.

Disadvantages
• Slowness of encryption. The person or machine using a block ci-

pher must wait until an entire block of plaintext symbols has been

received before starting the encryption process.

• Error propagation. An error will affect the transformation of all

other characters in the same block, although there are techniques

of self-healing when implementing the block cipher; (See the next

section.)

Table 3.1: Analyzing Block Algorithms, after [13].

27

Additionally, while block ciphers can be used in a variety of modes, they are often more
difficult to analyze mathematically than stream ciphers. However, block ciphers are often
more suitable for software implementation because they avoid bit by bit computations and
work on blocks of information that can be implemented in computers very efficiently [9].

3.3.3 Modes of Operation
Recall that a block cipher operates on a block of plaintext. Issues arise, however, when the
message size differs drastically from the block size. For example, a block cipher acting on
a block size of 128 bits needs help if the message size is only 20 bits. To account for the
varying needs of users and their messages, block ciphers can operate in a variety of modes.
The most common modes of operation are listed below:

• electronic codebook (ECB)
• cipher block chaining (CBC)
• cipher feedback (CFB)
• output feedback (OFB)
• counter (CTR).

Electronic Codebook Mode
ECB is the most common mode of operation for a block cipher. Given an encryption
function EK , a plaintext block P is subdivided into smaller words P = [P1,P2, . . . ,PL] and
produces the ciphertext C = [C1,C2, . . . ,CL], where C j = EK(Pj) is the encryption of Pj

using the key K. In other words, each of the words in the plaintext is encrypted using the
same key [10,12]. Since each plaintext block encrypts independently of another, this mode
is easy to work with and favors parallel processing on multiple machines. Additionally,
errors in transmission remain within the associated block and do not affect other blocks.
However, the major weakness with ECB is that identical blocks of plaintext encrypt to
identical blocks of ciphertext. Due to redundancies in most communication, an adversary
can detect repetitions and build a codebook without even knowing the key [9].

Cipher Block Chaining Mode
CBC incorporates the method of chaining, a feedback mechanism that resembles a recur-
sive operation. The encryption of a given block depends on the encryption of previous

28

blocks. Using notation from the previous paragraph, encryption is defined as

C j = EK(Pj⊕C j−1). (3.3)

Thus, as evidenced in Figure 3.5, the plaintext is XORed with the previous ciphertext block.
Equation 3.3 allows for a value of C0, which is some chosen initial value represented as an
initialization vector (IV). The purpose of an IV is to make each message unique, thus
alleviating the problem of identical plaintext messages encrypting to the same ciphertext
messages [9].

Figure 3.5: Cipher Block Chaining Mode, from [17].

Cipher Feedback Mode
CFB allows for encryption/decryption of a set of characters smaller than the block size. In
this sense, CFB is a way to implement a block cipher as a stream cipher. In general, CFB
operates on a k-bit mode, where k is less than or equal to the block size. The plaintext
P = [P1,P2, . . .] is broken down into k-bit chunks, where each Pj has k bits. Encryption
is once again started with an IV, which can be public, but it is unique for each block of
encryption. Once the IV is encrypted, the left most k-bits of this result are XORed with
the first k-bits of the plaintext. The result of this operation is the first chunk of ciphertext.
For the next stream of encryption, this k-bit chunk of ciphertext is then appended to the
right side of the IV, shifting all bits k positions to the left (left most k-bits are discarded).
Encryption then proceeds in the same manner. Mathematically, encryption is defined for

29

j = 1,2,3, . . ., on an n-bit plaintext message in the following manner:

O j = Lk(EK(X j)) (3.4)

C j = Pj⊕O j (3.5)

X j+1 = Rn−k(X j)||C j. (3.6)

Lk refers to the leftmost k-bits and Rn−k refers to the rightmost n− k bits; X1 is the IV and
|| refers to concatenation. Figure 3.6 depicts CFB on a s-bit mode.

Encrypt

IV

K

C1

• • •

(a) Encryption

Figure 3.13 s-bit Cipher Feedback (CFB) Mode

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

P1

64

s
s

s

EncryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

P2

64

s
s

C2

EncryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

PM

64

s
s

CM

CM–1

Encrypt

IV

K

P1

• • •

(b) Decryption

64 – s bits

64
s bits

Shift register

64 – j bitsj bits
Select Discard

C1

64

s
s

s

C2
s s

EncryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

64

s

P2

DecryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

CM

64

s

PM

CM–1

Figure 3.6: s-bit Cipher Feedback Mode on 64-bit Plaintext, from [18].

30

Output Feedback Mode
Figure 3.7 depicts OFB on a s-bit mode. OFB is another method of implementing a block
cipher in a stream mode. Just like in CFB, the IV is encrypted; the leftmost k-bits of this
result (call this O j) are extracted and XORed with the first k-bits of the plaintext, producing
the first k-bits of ciphertext. For the next stream, rather than use the ciphertext as the input
to the next IV, OFB takes O j and appends this chunk to the right side. Mathematically,
encryption is defined for j = 1,2,3, . . ., on an n-bit plaintext block in the following manner:

O j = Lk(EK(X j)) (3.7)

X j+1 = Rn−k(X j)||O j (3.8)

C j = Pj⊕O j. (3.9)

Encrypt

IV

K

C1

• • •

(a) Encryption

Figure 3.14 s-bit Output Feedback (OFB) Mode

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

P1

64

s
s s

EncryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

P2

64

s
s

C2

EncryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

PM

64

s
s

CM

OM–1

Encrypt

IV

K

P1

• • •

(b) Decryption

64 – s bits

64
s bits

Shift register

64 – j bitsj bits
Select Discard

C1

64

s
s

s

C2
s s

EncryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

64

s

P2

DecryptK

64 – s bits

64
s bits

Shift register

64 – s bitss bits
Select Discard

CM

64

s

PM

OM–1

Figure 3.7: s-bit Output Feedback Mode on 64-bit Plaintext, from [18].

The operation in both CFB and OFB involving appending, shifting, and discarding bits is

31

very similar to the way that a LFSR works. LFSRs can quickly produce a pseudorandom
sequence of bits defined by a linear recurrence relation. LFSRs have wide usage, especially
in military cryptography and for more on the subject consult [9, 12].

While CFB and OFB operate in similar manners, there are glaring differences with regards
to error propagation. In CFB, an error in the plaintext will affect all outputs of ciphertext
due to the recurrence relation. An error in the ciphertext, however, can be flushed out
since eventually the ciphertext block with the error(s) will be shifted left until discarded.
The problem here is that decryption produces nonsensical plaintext until errors are flushed.
In OFB, errors in the ciphertext do not propagate; bits of ciphertext that are corrupted
translate to corresponding bits in the plaintext with corruption. Since successive rounds
are not built using corrupted ciphertext, errors do not repeat into other rounds. OFB can
be used offline since future streams do not depend on the plaintext message being present.
However, various professionals such as Robert Jueneman have shown that k-bit OFB mode
is insecure for values of k less than the block size [19]. The key stream O j has to eventually
repeat, but the concern is that this repeat happens with the same key. When k is equal to the
block size n, the cycle length of key streams averages to 2n−1. When k < n, this average
cycle length drops to 2n/2, making it a much shorter time to find the repetition [9].

Counter Mode

CTR mode is similar to OFB but the output of the encryption is not used in the next stream.
Instead, the encryption input vector is incremented by some constant, typically one, and
used in the next register. The mode starts with an IV of length equal to the block length and
is encrypted with key K. The leftmost k-bits of this result are XORed with the first k-bit
chunk of plaintext to produce the first k-bit piece of ciphertext. A new encryption stream
is then created by adding one to the IV and the process iterates. Note how the new vector
does not depend on the encryption from the previous output. This process is depicted in
Figure 3.8.

32

Encrypt

Counter

K

P1

C1 C2 CN

• • •

(a) Encryption

(b) Decryption

Figure 3.15 Counter (CTR) Mode

Encrypt

Counter + 1

K

P2

Encrypt

Counter + N – 1

Counter Counter + 1 Counter + N – 1

K

PN

EncryptK

C1

P1 P2 PN

• • •

EncryptK

C2

EncryptK

CN

Figure 3.8: Counter Mode, from [18].

Mathematically, encryption in CTR mode is given by

X j = X j−1 +1 (3.10)

O j = Lk(EK(X j)) (3.11)

C j = Pj⊕O j. (3.12)

3.4 The Data Encryption Standard
DES is perhaps the most well-known block cipher of the last century. It was for several
decades the standard for data transmission in electronic commerce. Although it is no longer
secure enough for much of our business needs in the United States (U.S.), DES is still in
use as a primary system in some parts of the world and even for lower level applications in
the U.S. such as secure speech [20].

33

3.4.1 History
Although cryptographic algorithms have been in use for quite awhile, times of intensive
military conflict have necessitated the need for secure communications. The world wars
forced militaries to create ciphers to facilitate communication. The breaking of the infa-
mous Zimmermann Telegram accelerated the U.S. entry into WWI. The German Enigma
machine was in use for almost 20 years before the British and Polish were able to decrypt
its messages in WWII. Claude Shannon gave us further insight into making cryptographic
algorithms stronger following the wars, in 1949.3 Furthermore, with computers coming
to the forefront in the 1950s and 1960s, the need to protect data in the commercial sector
became apparent [11].

Various private industries began earnest work into the development of strong block ciphers
in the late 1960s [11]. Due to wars and the need for protecting government data, cryptology
generally fell to the hands of the U.S. Department of Defense and Department of State. The
rise in commercial industry, however, engendered the need for a public encryption system
to be created. The NBS was charged with the task of finding this algorithm.

At the time, International Business Machines (IBM) was already involved in cryptography
and algorithm development. According to D. Coppersmith, IBM was asked in the early
1970s by Lloyd’s of London insurance to develop an encryption scheme for protecting
automated teller machine (ATM) data [21, 22]. Officially, NBS issued a public request
for a national cryptographic standard in the 1973 Federal Register. NBS specified nine
major design principles, some of which included: ability to provide a high level of security,
available to all users, adaptable to multiple applications, exportable, security depending on
the key and not the secrecy of the algorithm, etc. [9,13]. Few products were submitted, and
none of them met sufficient criteria for a standard, thus NBS issued a second request in the
1974 Federal Register.

IBM was already working on an algorithm when NBS issued their request. At two separate
sites (Kingston and Yorktown Heights, NY), the IBM team consisting of Roy Adler, Don
Coppersmith, Horst Feistel, Edna Grossman, Alan Konheim, Carl Meyer, Bill Notz, Lynn
Smith, Walt Tuchman, and Bryant Tuckerman developed an algorithm they dubbed Lucifer

3C. Shannon wrote arguably the most influential paper of the 20th century on cryptography in 1949,
"Communication Theory of Secrecy Systems."

34

[9, 13, 21]. IBM submitted Lucifer to NBS in 1974, who forwarded the algorithm to the
National Security Agency (NSA) for review. After some modifications, NSA returned a
version which was approved and published by NBS in 1975 as DES. After two years of
critique and criticism, NBS adopted DES as the national standard in 1977 [9, 12].

From its publication in 1975, DES has been embroiled in controversy. First, the proponents
of Lucifer were dismayed that the NSA reduced the key size from 128 bits to 56. Second,
the design considerations of DES were not released at the time of publication. This worried
some because many thought that either IBM or the NSA had built a “trapdoor” into the al-
gorithm, i.e., a secret weakness to allow only them to be able to break the system. However,
Coppersmith argues that this was not the case; IBM was circumspect and disclosure of this
information was to prevent cryptanalysis [21]. Finally, the NSA “characterized DES as one
of their biggest mistakes” [9]. The NSA approved the standard with the notion that DES
would be a hardware-only protocol; NBS issued the standard with enough information so
that programmers could write DES software. In this respect, DES did more for the field
of cryptanalysis, and it came to no surprise that the next government standard algorithm
(Skipjack) was classified [9].

DES was officially published on January 15, 1977, as Federal Information Processing Stan-
dards (FIPS) Publication 46. NBS required that the standard be recertified and validated
every five years after that. In 1983, DES passed the test easily. In 1988, however, the NSA
had objections to the standard and demurred that it would not take long for DES to be bro-
ken. Unfortunately, there were no other viable alternatives available and businesses were
regularly using DES for encryption needs [9]. The standard was recertified and updated on
January 22, 1988, as FIPS Publication 46-2. DES was again recertified in 1993. By 1997,
however, several methods were known for attacking DES like systems, thus initiating the
search for a replacement. DES was recertified on October 25, 1999, as FIPS Publication
46-3, which also encouraged the use of Triple DES (equivalent of a 112-bit key) to secure
data [12]. With successful cryptanalysis occurring in 1999, NBS (now the NIST) convened
to select a replacement. Finally, in November 2001 AES was published but DES would
remain in place until its removal in May 2005. For almost 30 years, DES was the national
standard for encryption.

35

3.4.2 Algorithm Overview

DES is a symmetric block cipher operating on blocks of 64-bit plaintext. It is a Feistel
type system whose round function utilizes SPN operations. The key is 56 bits in length,
although it is expressed as a 64-bit string; every eighth bit is a parity check bit used for
error detection and is usually ignored (see a text on coding theory for more on this subject).
Since encryption must be invertible, a 64-bit block of plaintext encrypts to a 64-bit block
of ciphertext. Thus, encryption and decryption can be visualized [23], respectively, as

KEY (56 bits)+Plaintext(64 bits) =Ciphertext(64 bits) (3.13)

KEY (56 bits)+Ciphertext(64 bits) = Plaintext(64 bits). (3.14)

Outline

Figure 3.9 depicts the DES algorithm, consisting of 16 rounds. A 64-bit block w of plaintext
is sent through an initial permutation (IP), to obtain w0 = IP(w). This new block is then
split into a left and right half, each 32 bits long, i.e., w0 = L0R0. For 16 rounds, the
operations are the same. The right half goes into the round function f while also becoming
the left half of the next round. The left half is XORed with the output of the round function,
and the result of this XOR becomes the right half of the next round. Mathematically, this
is given for 1≤ i≤ 16 as

Li = Ri−1 (3.15)

Ri = Li−1⊕ f (Ri−1,Ki). (3.16)

The notation Ki represents the ith key, but only 48 bits from the 56-bit key. After applying
the 16th round function, the left and right halves are swapped, then go through an inverse
permutation to obtain the ciphertext c = IP−1(R16L16).

36

Plaintext

IP

L0 R0

f

K1

L1 R1

f

K2

L2 R2

L15 R15

f

K16

R16 L16

IP−1

Ciphertext

Figure 3.9: The DES Algorithm, after [12].

37

Initial Permutation

The IP actually occurs before the start of the first round. It does not affect the security of
DES, but it also does not have any cryptographic significance. The best explanation is that
the IP and inverse IP made data more easily readable by processors in the 1970s [9, 12].
This step is essentially a table look up, read left to right and top to bottom. The IP is listed
below in Table 3.2. For example, the 58th bit of w becomes the 1st bit of w0, the 50th bit
of w becomes the 2nd bit of w0, 42nd bit of w becomes the 3rd bit of w0, etc.

Initial Permutation
58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

Table 3.2: DES Initial Permutation, from [12].

Round Function

Recall that the input to each round function is the right half of the block from the previous
round. The function f has a number of steps within it, the first of which is another per-
mutation called expansion. This expansion permutation is depicted in Table 3.3, whereby
R is expanded to E(R). Note that this table has 48 bits of output operating on an input of
32 bits. While the reader will note repetitions in the table, each input block generates a
unique output block. The table reads the same as the IP, i.e., the 32nd bit of the input block
becomes the 1st bit in the expansion block, etc. The purpose of expansion is not only to
provide a block size equal to the key length for the XOR operation, but also to exhibit an
avalanche effect. In other words, one bit affects two substitutions [9].

38

Expansion Permutation
32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 25
24 25 26 27 28 29 28 29 30 31 32 1

Table 3.3: DES f Expansion Permutation, from [12].

After expansion, E(R) is then XORed with a 48-bit subkey Ki (key generation will be
discussed later). The result of E(R)⊕Ki is another 48-bit string, which is partitioned into
6-bit chunks labeled B1B2 · · ·B8. These B j then go through a substitution step. Substitution
is performed via S-Boxes, whereby the input to S j is B j. The input to each S-Box is a 6-bit
string, while the output is a 4-bit string. Substitution will be discussed in greater detail in
the next subsection.

The outputs of the S-Boxes are eight 4-bit chunks, which are concatenated to form
C1C2 · · ·C8. This new string then goes through another permutation, sometimes known
as the P-Box. The P-Box permutation is shown in Table 3.4. This operation completes the
round function; the layout of the DES round function is displayed in Figure 3.10.

Permutation
16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Table 3.4: DES f Permutation, from [12].

39

1iR

Expander

1
()

i
E R

i
K

4B3B2B1B 5B 6B 7B 8B

1S 2S 3S 4S 5S 6S 7S 8S

4C3C2C1C 5C 6C 7C 8C

Permutation

1(,)i if R K

6 bits

4 bits

Figure 3.10: The DES Function f , after [12].

Key Generation

Recall that the initial DES key is 64 bits in length, but every eighth bit is a parity check bit.
Thus, ignoring the parity check bits, the key is reduced to a 56-bit string K. As was written
in the original registers [24–26], the key bits are then permuted via Permuted Choice-1.
Following the first permutation, the key is split into two halves of 28 bits each, K =C0D0.
C0 and D0 then undergo a left shift to obtain C1 and D1. Each bit in C0 and D0 will shift
left one place, but in general this is not the case. In general for 1 ≤ i ≤ 16, the left shift
is described by Ci = LSi(Ci−1) and Di = LSi(Di−1), where LSi implies a left shift of one

40

or two places in the ith round. Both the first permutation and left shift are described in
Tables 3.5 and 3.6.

Permuted Choice-1
57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4

Table 3.5: DES First Key Permutation, after [12].

Number of Key Bits Shifted Per Round
Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Shift 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 3.6: DES Key Left Shift Operation, from [12].

After the left shift, the 56-bit string CiDi undergoes one final permutation, denoted Per-

muted Choice-2. This second permutation is sometimes also called a compression permu-

tation because it selects a subkey of 48 bits from the 56-bit input. The result from Per-
muted Choice-2 is Ki for each round. This compression is required because the other input
to the XOR operation in the round function is the 48-bit expansion string E(R). Permuted
Choice-2 is displayed in Table 3.7.

Permuted Choice-2
14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

Table 3.7: DES Second Key Permutation, after [12].

41

Inverse Initial Permutation

The final operation in the DES algorithm is another permutation, the inverse of the IP.
After the last round, the left and right halves do not swap but instead concatenate to form
the input for IP−1. The purpose of IP−1 is to ensure that the algorithm can be used for
decryption. In decryption, the algorithm performs in the same manner, but the order of the
keys is reversed [9, 12]. IP−1 is displayed in Table 3.8.

Inverse Initial Permutation
40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25

Table 3.8: DES Inverse Initial Permutation, from [12].

3.4.3 Substitution Boxes

Recall that within the DES round function, the input to the S-Boxes are the blocks
B1B2 · · ·B8. Each of the B j is assigned to the corresponding S-Box S j, where S j is a ta-
ble lookup. The 6-bit input B j is written as b1b2b3b4b5b6. The end bits b1 and b6 are
used to determine the row of S j; b2b3b4b5 determine the column of S j. The entry in the
corresponding row and column of the S-Box is the output. The output of the S-Boxes is
C1C2 · · ·C8, where Ci is a 4-bit string. In this respect, each S-Box acts as a function map-
ping six bits of input to four bits of output. In fact, the S-Boxes are represented by a special
class of cryptographic functions called Boolean functions (more on this in Chapter 4).

Table 3.9 displays the first S-Box in its traditional manner. Note that each row in the box
contains the numbers zero through 15 exactly once. The reader might wonder how six bits
of input will produce four bits of output given this form. Since a bit takes on the value of
zero or one, the S-Box needs to be converted to its binary form (see Table 3.10).

42

S-Box 1

ROW/COL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 3.9: DES Substitution Box 1, after [12].

S-Box 1
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 1110 0100 1101 0001 0010 1111 1011 1000
01 0000 1111 0111 0100 1110 0010 1101 0001
10 0100 0001 1110 1000 1101 0110 0010 1011
11 1111 1100 1000 0010 0100 0100 0001 0111

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 0011 1010 0110 1100 0101 1001 0000 0111
01 1010 0110 1100 1011 1001 0101 0011 1000
10 1111 1100 1001 0111 0011 1010 0101 0000
11 0101 1011 0011 1110 1010 0000 0110 1101

Table 3.10: DES Substitution Box 1 in Binary Form, after [23].

As a simple example, suppose B1 = 001101. The outer bits b1b6 = 01 determine the row
in the S-Box. The inner bits b2b3b4b5 = 0110 determine the column. Thus, the entry
in S1 is 13, represented as 1101 in binary. This is conveniently colored for the reader in
Table 3.10. Concatenating the remaining S-Boxes yields the desired 32-bit string for the
next permutation.

The security of the DES algorithm rests primarily in the S-Boxes. For many years, their
design was shrouded in mystery and to some extent this is true today. Although the boxes
appear to be random shufflings of 32 rows of 16 integers, the IBM design team claims that

43

the S-Box design is intended to thwart cryptanalysis. To investigate the claims of an alleged
NSA trapdoor emplaced in the boxes, the U.S. Senate Select Committee on Intelligence
conducted a classified review in 1978 and found no evidence of wrongdoing [9]. Although
the findings were not released, the NSA confirmed that they did not tamper with the inner
workings of DES. This might appear a closed case on the surface, but several of the IBM
designers added further controversy to the topic with their comments. Tuchman and Meyer
both stated that the S-Boxes were built by IBM and unaltered by the NSA [9]. Coppersmith
stated that the NSA “provided technical advice to IBM” and requested that S-Box design
considerations be kept secret [21]. Alan Konheim stated, “We sent the S-boxes off to
Washington. They came back and were all different. We ran our tests and they passed” [9].
Clearly, there is some doubt on the veracity of either side of the debate, but an interesting

question is why these eight S-Boxes were chosen out of the possible 8!
(

2256

8

)
.

The NSA has since revealed several design criteria relating to the construction of the DES
S-Boxes [27]. They are summarized as follows:

P1. No S-box is a linear or affine function of the input.
P2. Changing 1 input bit to an S-box results in changing at least 2 output bits.
P3. S(xxx) and S(xxx+001100) must differ in at least 2 bits.
P4. S(xxx) 6= S(xxx+11e f 00) for any choice of e and f .
P5. The S boxes were chosen to minimize the difference between the number of 1’s and

0’s in any S-box output when any single output bit is held constant.

Several of the original Lucifer designers have also shed some light on the selection and
design of the S-Boxes. Meyer wrote that as the number of design criteria increased, the
selection of the appropriate S-Boxes was based on the number of terms in the correspond-
ing boolean expressions [11]. According to Meyer, in order to enable implementation on a
single logic chip, it was necessary to keep the number of terms around 52 and 53. Copper-
smith also wrote a detailed explanation of the eight S-Box design principles that were used
in the original specifications. These criteria are listed below:

S-1 Each S-box has six input bits and four output bits (largest size at the time to put on a
chip).

S-2 No output bit should be too close to a linear function of the input bits (output bits

44

cannot be a linear combination of the input bits over F2).
S-3 Each possible 4-bit output is attained exactly once as the middle four input bits range

over their 16 possibilities.
S-4 If two inputs differ in exactly one bit, then the outputs must differ in at least two bits.
S-5 If two inputs differ in the two middle bits exactly, then the outputs must differ in at

least two bits (if ∆Ii, j = 001100001100001100, then |∆Oi, j| ≥ 2).
S-6 If two inputs differ in their first two bits and are identical in their last two bits, then

the two outputs must not be the same.
S-7 For any nonzero 6-bit difference between inputs, ∆Ii, j, no more than eight of the 32

pairs of inputs exhibiting ∆Ii, j may result in the same output difference ∆Oi, j.
S-8 The case ∆Oi, j = 0 follows (S-7) but with stronger restrictions.

There are many similarities between the NSA list and Coppersmith’s, the most important
property being nonlinearity. Linearity will be discussed more in Chapter 4, but a linear
algorithm is trivially broken. If an adversary knows a few pairs of plaintext and ciphertext
in a linear algorithm over the same field, the key can be recovered by solving a simple
linear system.

It is true that generic S-Boxes are chosen to resist differential and linear cryptanalysis.
They are usually the only nonlinear part of a cipher, which harkens back to the DES design
criteria. Although the S-Box itself is a lookup table, for DES it is a function mapping six
input bits to four output bits. In this sense, “larger” S-Boxes are generally more resistant
to statistical cryptanalysis [9]. “Larger” in this sense means a greater number of input
and output bits associated with the mapping. The selection of S-Boxes in a cipher is a
debatable issue. The DES designers claimed that months of analysis went into the selection
of the eight S-Boxes. Yet, a randomly designed S-Box can often achieve an adequate
level of resistance to attacks. While intentionally designed S-Boxes typically show strong
resistance to known attacks, their performance against unknown attacks is unknown. On
the other hand, randomly selected S-Boxes of large size can provide an adequate level of
security [9].

45

3.4.4 Cryptanalysis of DES

As was mentioned in Subsection 3.4.1, the security of DES has always been in question.
The key space was obviously an immediate issue. With a 128-bit key, the key space is
2128 ≈ 3.4×1038, but with a 56-bit key the key space is much smaller at 256 ≈ 7.2×1016.
Although this is still a large number, famous cryptographers Whitfield Diffie and Martin
Hellman (best known for their invention of public-key crypto) analyzed the results of a
brute force attack in 1976 [9, 28, 29]. In a brute force attack, the cryptanalyst tries every
possible key until ciphertext decrypts to meaningful plaintext. Diffie and Hellman theorized
that a special parallel computer costing roughly $20 million could search the entire DES
key space in 105 seconds, or about one day [28, 29]. Even though Diffie and Hellman
acknowledged that this type of attack was only feasible for organizations like the NSA,
they predicted that DES would be totally insecure by 1990 [9].

Hellman independently proposed another attack known as a chosen plaintext attack in 1980.
In a chosen plaintext attack, the adversary is assumed to have control of the cipher but
not the key. Thus, he can encrypt any number of plaintext messages and try to use the
corresponding ciphertexts to find the key. In Hellman’s method, the cryptanalyst needs
memory space to store the possible encryptions, and he can thus reduce the time to find the
key. A single plaintext block is encrypted under all possible keys, with all 256 results being
stored in memory. Then the cryptanalyst only has to insert the plaintext into the cipher,
recover the corresponding ciphertext and look the key up in memory. Hellman proposed
that a special computer could do this for $4-5 million, yielding 100 solutions per day [9,28].

Israeli cryptographers Eli Biham and Adi Shamir were the first to publicly announce the
method of differential cryptanalysis in 1990. At the time, brute force was the best known
possible attack against DES. Coppersmith argues that IBM knew of this technique and
purposely designed the algorithm to defeat this technique. Regardless, differential crypt-
analysis is another version of a chosen plaintext attack and it revolutionized the field of
cryptanalysis. In this method, the cryptanalyst starts with two plaintext messages p and
p′. These messages have a known difference, whereby the difference between two strings
is found by the XOR, i.e., ∆p = p⊕ p′. Then the cryptanalyst can find the corresponding
ciphertext blocks c and c′, that also have a known difference ∆c. Knowing this difference
in ciphertext pairs allows the cryptanalyst to assign probabilities to different keys since

46

more pairs give information about the most probable key. Specifically, since we know
the plaintext and ciphertext differences, then we also know the difference in the strings
after the key mixing XOR step (since the XOR cancels the key out when looking at the
differences). Knowing this difference, call it ∆A, we can infer differences in the strings fol-
lowing the S-Boxes based on probabilities. These two differences give information about
the key [9, 21]. As a toy example for why this works, consider Example 3.4.1.

EXAMPLE 3.4.1. Assume that for some block cipher, the cryptanalyst Eve has access
to two messages p and p′. She runs these through the expansion box and arrives at p =

01101 and p′ = 11100. Thus, she can easily calculate the difference between these, i.e.,
01101⊕11100 = 10001. She then runs these blocks through the key mixing step (reminder
Eve does not know the key), yielding: 01101⊕Ki = 10010 and 11100⊕Ki = 00011. Eve
then calculates the difference between these two outputs: 10010⊕ 00011 = 10001. Thus,
Eve does not need any information about the key to obtain this. Now she can run the
blocks through the S-Boxes and obtain this difference, as well as through the P-box and get
this difference. Knowing all these differences allows Eve to run more messages through the
cipher and observe which of these are more probable than others, and she can start guessing
at keys.

Biham and Shamir first utilized differential cryptanalysis on some reduced-round DES vari-
ants. For a six-round DES, they showed that a chosen plaintext attack broke the algorithm
in less than 0.3 seconds on a personal computer (pc) [28, 30]. If the encryption machine
is not known, but the plaintext-ciphertext pair is known (called a known plaintext attack),
then differential cryptanalysis reduces the space to 236 ciphertexts. Biham and Shamir also
proved that “any reduced variant of DES is breakable by a chosen plaintext attack faster
than via exhaustive search” [28]. A brute force attack on DES requires 255 operations,
but Biham and Shamir broke DES with differential cryptanalysis using a chosen plaintext
attack on 247 plaintexts. Only 236 ciphertexts are needed, however, to analyze and deduce
the key. A known-plaintext attack on DES does not reduce the operation space. While
a differential cryptanalytic method might seem like a massive breakthrough in cracking
DES, this space is still unreachable in a feasible time period for most people and the costs
are high. In fact, if an exhaustive key search of 255 operations is performed, assuming the
DES algorithm can be implemented at a modern rate of 1.6 gigabytes/sec, then a chip can

47

perform (1.6×109)/64 = 2.5×107 DES computations per second. Even at this rate, this
would take 255/(2.5×107)≈ 1.4×109 ≈ 45 years [31]. Even in a chosen plaintext attack
with the ability to store the entire search space, the storage of 244 plaintext-ciphertext pairs
for example requires upwards of 280 terabytes (TB) [31]. For some perspective, the highest
capacity hard drive on the commercial market right now has a 12 TB capacity and it costs
over $1,600.

At the CRYPTO ’93 Rump Session, researcher Michael Wiener proposed a design for a
theoretical DES brute force cracker that could break the algorithm in an average of 3.5
hours with guaranteed results in seven hours [9]. Wiener estimated the cost of this machine
to be $1 million; the machine could conduct a key search in parallel so that 16 encryptions
could occur simultaneously [10]. Although no one has publicly admitted to constructing
such a machine, this financial cost would not be that expensive for a large organization,
government, military, or country.

In 1994, Mitsuru Matsui developed a new cryptanalytic technique called linear cryptanal-

ysis. In his first paper, where he developed the method, Matsui reduced the search space to
247 known plaintexts [32]. While this equaled the work of Biham and Shamir, Matsui im-
proved the technique in his second paper and showed a complexity 243 [33]. This method
was apparently unknown to the DES designers.

Linear cryptanalysis is a known plaintext attack that essentially makes use of a linear func-
tion of the input bits. There are two parts to linear cryptanalysis, which Matsui refers to as
Algorithm 1 and Algorithm 2 [32]. The goal is to find a linear expression

p1 p2 p3 · · · pm⊕ c1c2c3 · · ·cm = k1k2k3 · · ·km, (3.17)

where the pi,ci and ki are bit positions in the corresponding plaintext, ciphertext, and key,
respectively, such that the expression holds with probability p 6= 0.5. The first step entails
finding linear equations or approximations relating bits of the plaintext, ciphertext, and key
via the S-Boxes. Once this linear relation is determined, the relation is then expanded to
the other operations in the cipher to arrive at a linear approximation for the entire cipher.
For example, perhaps the second bit of the plaintext XORed with the first and third bits of
the ciphertext equal the fifth bit of the key, i.e., p2⊕ c1⊕ c3 = k5. However, since the key

48

is unknown, the algorithm is initiated by setting the right hand side of Equation 3.17 equal
to 0 or 1. Thus, we often start with the linear equation p1⊕ p2⊕·· ·⊕ c1⊕ c2⊕·· ·= 0.

Once the expression is determined, the cryptanalyst applies all possible input and output
values to the expression to determine the probability the equation is true. By counting the
number of times that this equation is true for a given key bit value, we can deduce partial
key bits based on probability. Specifically, we find Tmax and Tmin, where these represent
the maximum and minimum number of plaintexts such that the left hand side of Equation
2.17 is zero. If |Tmax− N

2 | > |Tmin− N
2 |, then the partial key guessed is 0; if the inequality

is flipped, guess 1 [32, 33]. This guess acts on the notion that for a given key bit value,
this T value is the most likely set of bits and the corresponding linear approximation holds
with high probability. Although linear cryptanalysis reduces the complexity to 243, it is still
highly theoretical and costly in time, money, and processing power.

A more recent development with linear cryptanalysis was conducted by Pascal Junod in his
master’s thesis. By implementing Matsui’s algorithm on a special processor optimized
for linear cryptanalysis, Junod showed via experiment that given 243 known plaintext-
ciphertext pairs, the complexity of attack could be reduced to 240 [34].

Still, it would seem that the most popular approach to the cryptanalysis of DES is an ex-
haustive search of the key space. In 1997, RSA Data Security issued a public challenge
to decrypt a DES message and find the key, while also offering $10,000 to the winner.
Computer scientist Rocke Verser took on the challenge and submitted the correct key in
five months. Verser’s method included creating a program to search the key space that
thousands of personally and corporate owned computers enlisted processing time on [12].

In 1998, the second challenge was issued by RSA Data Security, but this time the key was
found in just 39 days. Later that year, the Electronic Frontier Foundation (EFF) started
a project called “DES Cracker” in the summer of 1998, a computer built specifically for
parallel computing. For just $250,000, EFF used DES Cracker to find a key in 56 hours
[10]. In 1999, RSA Labs issued the third challenge which was won by the DES Cracker
again. With 100,000 computers networked across the globe, the correct key was found in
22 hours and 15 minutes, testing over 245 billion keys per second [10]. This essentially
spelled the end of DES as a national standard. For more information on how EFF designed

49

and implemented the DES Cracker, the reader should consult [12].

While brute force attacks as well as linear and differential cryptanalysis tackle the algorithm
head on, there are other means to attack DES with known weaknesses. One such way
depends on the key used. Some keys are better than others, and specifically a key made up
of all 0s or all 1s or a 50/50 split is considered weak. Due to the method for key generation,
a key with this makeup will be the same key used in every round of the algorithm [9].

The other potential weakness is in the actual design of the S-Boxes. Several analysts have
studied the S-Boxes and shown interesting relationships. Davio et al. expanded on a point
that Hellman made concering the redundancy in the fourth S-Box, S4. S4 uses only one
nonlinear function, and as a result, the last three output bits “can be derived from the first
one by complementing some of the input bits and by complementing the second and third
outputs under control of the variable x6” [35]. Desmedt et al. proved that if the input
to three neighboring S-Boxes was changed, then the output of the round function f will
remain the same under certain conditions. In this set of conditions, the notation abcde f

represents the 6-bit input to the S-Boxes [36]. The conditions listed below must all be
satisfied:

1. complement the inputs a,b and e of the middle three S-Boxes;
2. complement the input c or d of the last S-Box;
3. do not complement the input f of the middle three S-Boxes.

Additionally, Shamir noted that by examining the XOR of the output bits, there was a clear
imbalance. Take for example, S1, denoted in Table 3.10. If we look at the entries where
s1⊕s2⊕s3⊕s4 = 0, where si is a bit in the S-Box output, then there are seven such outputs
on the left half of S1 versus 25 on the right half [9, 37]. Similar such imbalance is apparent
in the remaining S-Boxes. These are just features of the S-Boxes that an adversary could
potentially take advantage of.

50

CHAPTER 4:
Boolean Functions

I am now about to set seriously to work upon preparing for the press an account

of my theory of Logic and Probabilities which in its present state I look upon

as the most valuable if not the only valuable contribution that I have made or

am likely to make to Science and the thing by which I would desire if at all to

be remembered hereafter...

∼ George Boole in a letter to William Thomson, 1851

The study of BFs is a relatively old discipline dating back to the 1800s. The study of
BFs in cryptography, however, is fairly nascent. BFs owe their name to English mathe-
matician George Boole (1815-1864). Boole came from a poor, working class family that
often struggled to make ends meet. The young Boole became interested in learning and
even taught himself Greek by the age of 14. Boole was forced into work at the age of 16,
and subsequently became a teacher at a small school in 1831. From that point forward,
he remained in academia until his death in 1864. Boole’s most significant contribution
to mathematics centered on two publications in 1847 and 1854, in which he introduced
algebra into Aristotelian logic. The resulting Boolean algebra became a building block
of modern day circuit analysis and model theory. The definitive work on Boole’s life is
Desmond MacHale’s George Boole: His Life and Work, 1985, but a more concise synopsis
is available in [38].

4.1 Boolean Algebra and Operations
Perhaps the reader is familiar with the Boolean algebra used in logic and circuit design.
This algebra has two operations, namely addition and multiplication on the set {0,1}. The
Boolean sum and product are given by Table 4.1.

51

x1 x2 ∨ (OR)

0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 · (AND)

0 0 0
0 1 0
1 0 0
1 1 1

Table 4.1: Boolean Sum and Product Tables.

These operations should not be confused with the ones we define for BFs. BFs also utilize
a sum and a product, but they operate on vectors and not just single bits. While the product
operation is the same, addition of BFs uses the XOR and has the truth table representation
in Table 4.2 (note this is the same as addition in the finite field F2).

x1 x2 ⊕ (XOR)

0 0 0
0 1 1
1 0 1
1 1 0

Table 4.2: Boolean Function Addition.

For the world of BFs, we consider a vector space Vn of dimension n over the two-element
field F2. Thus, elements of Vn are vectors with n components or in our case bits. We also re-
quire this vector space to operate over F2. Given two vectors in Vn, say aaa = (a1,a2, . . . ,an)

and bbb = (b1,b2, . . . ,bn), we define addition over F2 as [39]:

aaa⊕bbb = (a1⊕b1,a2⊕b2, . . . ,an⊕bn). (4.1)

The bold font is only used to emphasize that these are vectors, but the notation ~a or ā is
sometimes also used. Likewise, we also define the scalar product of two vectors in Vn as:

aaa ·bbb = a1b1⊕a2b2⊕·· ·⊕anbn. (4.2)

52

There is one more operation on BFs that we consider. This operation, denoted by ?, resem-
bles a concatenation. This is defined as aaa?bbb = (a1b1,a2b2, . . . ,anbn). We can now define
just exactly what a BF is.

4.2 Definitions and Representations

Definition 4.2.1. [39] A Boolean function f in n variables is a map from Vn to F2,

f : Vn→ F2. (4.3)

Since the vector space Vn is over the finite field F2, the vectors in the domain of a BF are
binary vectors. Thus, Vn can also be represented as the set Fn

2 of all binary vectors of length
n considered as an F2 vector space [40]. Given this alternate notation, other representations
of a BF are

f : Fn
2→ F2 [40] (4.4)

f : Zk
2→ Z2 [41]. (4.5)

It is often more convenient to use the notation given in Equation 4.4, thus we will stick with
this for the remainder of the thesis. A BF can be uniquely represented by its truth table,
a (0,1)-sequence defined as (f (vvv0), f (vvv1), . . . , f (vvv2n−1)), where the f (vvvi) are the function
output values and the vvvi are ordered lexicographically [39].

EXAMPLE 4.2.2. Consider the truth table for the BF, f : F3
2 → F2 in Table 4.3. The

unique representation for this BF is given by the column of outputs as a sequence,
(0,0,1,1,1,1,0,1). Note that this output column is a binary string of length 23.

53

x3 x2 x1 f

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 4.3: Truth Table of a BF.

Example 4.2.2 displays the truth table representation for a BF, but it deserves some more
explanation. A vector in Fn

2 has n bits, and we label the input bits as xi for 1 ≤ i ≤ n. The
ordering of the xi is unimportant; we can order them left to right or right to left. Each row
in the truth table represents a vector in Fn

2, and ordering here is important. The vector space
Fn

2 contains 2n vectors, whereby each vector vvvi is displayed in a truth table by its binary
representation bbb(i) of i, 0 ≤ i ≤ 2n− 1. Thus, in Table 4.3, the eight vectors in F3

2 are
ordered lexicographically by their binary representations from zero to seven.

The other way to represent a BF is via a polynomial in

F2[x1,x2, . . . ,xn]/(x2
1− x1,x2

2− x2, . . . ,x2
n− xn).

This polynomial representation of a BF is referred to as the algebraic normal form (ANF),
given as

f (xxx) = f (x1,x2, . . . ,xn) = ∑
aaa∈Fn

2

λaaa

(
n

∏
i=1

xai
i

)
, λaaa ∈ F2, aaa = (a1,a2, . . . ,an). (4.6)

Equation 4.6 [42] will make more sense in a bit, but first we need to define some more
terms. The Hamming weight of an arbitrary vector in Fn

2, denoted by wt(xxx), is the number of
1s in the vector xxx. Similarly, the Hamming weight of f is the number of 1s in the truth table

54

output sequence. The support (or on-set) of a BF f , denoted by Ω f = {xxx ∈ Fn
2 : f (xxx) = 1},

is the set of vectors whose truth table output is 1 [39, 42]. Thus, we can also define the
Hamming weight of f as wt(f) = |Ω f |. The Hamming distance between two functions f

and g is the weight of f ⊕g, i.e., wt(f ⊕g).

The algebraic degree of f is the largest value of the Hamming weight of aaa such that λaaa 6= 0
[42], or more simply the number of variables in the highest order monomial with nonzero
coefficient [39].

EXAMPLE 4.2.3. Let us refer back to Example 4.2.2 for demonstration of these concepts.
Below are the truth table and ANF for this function f . The Hamming weight of f is
wt(f) = 5; the degree of f is deg(f) = 3 since the largest term in the ANF is x1x2x3.

x3 x2 x1 f

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

ANF is x2⊕ x3⊕ x1x2x3

Table 4.4: Representations of a BF.

There is an injective mapping from the ANF representation of a BF to its truth table, so that
given one we can find the other. There are several ways to do this, and we start with the
algebraic method. The ANF of a BF is specified by its support in the following manner:

f (x1,x2, . . . ,xn) = ∑
τττ∈Ω f

(
n

∏
i=1

xi + τi +1

)
, τττ = (τ1,τ2, . . . ,τn). (4.7)

Using Equation 4.7, we can see how the ANF of f was computed in Example 4.2.3. Only
the vectors in the support are considered for the ANF. In the expansion below, there is no

55

difference between the usual "+" and⊕; they both represent the XOR operation, but merely
help to differentiate between vectors.

ANF = (x1 +1)x2(x3 +1)⊕ x1x2(x3 +1)⊕ (x1 +1)(x2 +1)x3⊕ x1(x2 +1)x3⊕ x1x2x3

= (x1 +1)(x2x3 + x2)⊕ x1x2 + x1x2x3⊕ (x1 +1)(x2x3 + x3)⊕ x1x3 + x1x2x3⊕ x1x2x3

= x1x2x3 + x2x3 + x1x2 + x2⊕ x1x2 + x1x2x3⊕ x1x2x3 + x2x3 + x1x3 + x3⊕ x1x3 + x1x2x3⊕ x1x2x3

=����x1x2x3 +���x2x3 +���x1x2 + x2⊕���x1x2 +����x1x2x3⊕����x1x2x3 +���x2x3 +���x1x3 + x3⊕���x1x3 +����x1x2x3⊕ x1x2x3

= x2⊕ x3⊕ x1x2x3

To convert back to the truth table sequence from the ANF, the process is the same with
a minor difference. Form a table similar to a truth table but replace the output column
with the ANF coefficients. Note in Table 4.5 that in the c column, 1s appear in the rows
representing the terms in the ANF→ x2,x3, and x1x2x3. Reproducing the method from the
preceding paragraph will yield the truth table output sequence for the function f .

x3 x2 x1 c

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 4.5: Conversion from ANF to Truth Table Sequence.

The other, somewhat quicker method to convert between the two representations is the
Transeunt triangle as proven by Shafer et al. in [43, 44]. In this method, either the truth
table output sequence or ANF sequence is placed in a row. Then in an inverted Pascal’s
triangle fashion, the consecutive values in this row are added modmodmod 2 (synonymous with
⊕). The result of the addition is placed in the next higher row between the two values in
which the operation was performed [43]. The operations are exhausted until a row with one

56

entry is reached; the left side of the resulting triangle is the (0,1)-sequence of the desired
conversion representation. In Figure 4.1, the function f output from Example 4.2.2 is
placed on the bottom row of the Transeunt triangle. After the triangle is formed, the left side
is the (0,1)-sequence of ANF coefficients, which matches the polynomial in Example 4.2.3.
In an analogous way, if the ANF coefficients are placed on the bottom row, the resulting
triangle will reveal the truth table output sequence.

1

0 1

0 0 1

1 1 1 0

0 1 0 1 1

1 1 0 0 1 0

0 1 0 0 0 1 1

0 0 1 1 1 1 0 1

x2

x3

x1x2x3

Figure 4.1: Transeunt Triangle Representation.

A BF whose algebraic degree does not exceed one is called an affine function. An affine
function with constant term equal to zero is called a linear function [42, 45]. Mathemati-
cally, an affine function on Fn

2 has the form

`aaa,c(xxx) = aaa · xxx⊕ c = a1x1⊕·· ·⊕anxn⊕ c, (4.8)

where aaa = (a1,a2, . . . ,an) ∈ Fn
2, c ∈ F2 [39].

EXAMPLE 4.2.4. An example of an affine function, f : F4
2→ F2, is x1⊕x2⊕x4⊕1, while

an example of a linear function is x1⊕ x2⊕ x4.

A BF is called homogeneous if its ANF contains terms all of the same degree. The linear
function in Example 4.2.4 is homogeneous. A function such as x2x4x5⊕ x1x3x5⊕ x3x4x5 is
also homogeneous.

57

4.3 Cryptographic Properties of Boolean Functions
Until this point, we have discussed the meaning of a BF and even hinted at nonlinear
components of a cryptosystem. Now we need to formally define properties of BFs that
make them useful for cryptography. BFs are used in many symmetric key algorithms, and
there is a correlation between cryptanalysis and the properties of the BFs used. There is
no established set of criteria for determining which mix of properties is necessary in the
construction of a cryptographic BF, but some are more important than others. As various
people have shown, the desired cryptographic properties of a BF generally depend on which
type of cryptanalytic attack they are to withstand and the structure of the algorithm itself.

4.3.1 Balance
Perhaps the easiest property for a BF to satisfy is balance. A BF is balanced if its output is
equally distributed [46]. In other words, a balanced BF on n variables has weight wt(f) =

2n−1. In a truth table, balance is the property that half the output bits are 1 and the other
half are 0. In this respect, the question of balance is a binary yes or no decision. By using
this property, it can be difficult for an adversary to obtain statistical dependencies between
the plaintext and ciphertext pairs [40].

4.3.2 Nonlinearity
Linearity is a cryptographer’s worst nightmare.

∼ Pante Stănică, Naval Postgraduate School (NPS) Professor

In Subsection 3.4.3, we introduced nonlinearity as a design criteria for the DES S-Boxes.
It is not surprising that many researchers and experts feel that nonlinearity is the most
important criteria for a BF to satisfy. The linear cryptanalytic attack takes advantage of
linear equation schemes to break a cipher, important because linear equations can be solved
in polynomial time. While it is not the aim of this thesis to describe or examine how to
construct strong nonlinear BFs, the reader can delve more into this topic in [40,45,47–51].

In terms of characterization, a nonlinear BF is a non-affine function, i.e., a BF whose ANF
contains at least one term with algebraic degree greater than one [51]. With respect to a
specific function, nonlinearity, N f , is defined as the minimum Hamming distance to the

58

class of all affine functions, or the distance to the nearest affine function on Fn
2 [45, 46].

Since nonlinearity is an integer valued property, functions can have varying measures of
cryptographic strength. In general, a BF used for cryptography should have the highest
nonlinearity possible. Of course, the nonlinearity of f is bounded above [40,45] so that the
highest possible nonlinearity is

N f ≤ 2n−1−2
n
2−1.

Willi Meier and Othmar Staffelbach [51] further clarified that a cryptographically good
nonlinear function also needs to be “invariant under a certain group of transformations.”
In their example, a BF f (x1,x2, . . . ,xn) might contain all nonlinear terms, but a simple
complement operation turns the function into a monomial with just one term. This new
function under transformation is poor with respect to the number of nonlinear terms. Thus,
BFs must have a large Hamming distance to the class of all affine functions to provide
confusion in an algorithm [40]. Mathematically, nonlinearity is defined as

N f = min
`∈An

d(f , `), (4.9)

where d(f , `) is the Hamming distance between f and an affine function `, and An is the
class of all affine functions on Fn

2. The exact nonlinearity value of a BF f is given in terms
of the Walsh Transform, which will be further explained in Section 4.5.

4.3.3 Correlation Immunity
The notion of correlation immunity was developed in 1984 by Thomas Siegenthaler [52],
when he noted that certain stream ciphers were vulnerable to correlation attacks. Recall
that in a stream cipher, the encryption scheme enciphers plaintext characters individually.
As a plaintext bit moves through the cipher, a key combines with the bit to form the corre-
sponding ciphertext. Each of these plaintext characters passing through the cipher require
a key, but the process for generating the set of keys (key stream) is different for every
cipher. Many stream ciphers use the LFSR technique for key stream generation. In this
method, multiple LFSRs are set in parallel, with their outputs combined via a nonlinear BF
to break up the linearity. The resulting combination forms the key stream. In a correlation

59

attack, the adversary observes a correlation between the individual LFSR outputs and the
key stream [9, 53].

Thus, a BF is correlation immune of order k if its output is statistically independent of the
combination of any k of its inputs [46]. Alternately, a BF f in n variables is correlation
immune of order k, 1 ≤ k ≤ n, if P[(x(i1),x(i2), . . . ,x(ik))| f (xxx) = p] = 1

2k , where x(ii) is
the value of the i-th bit, p ∈ F2, and P is the conditional probability of an event A given
event B.

EXAMPLE 4.3.1. Consider the following truth table for a function f (x1,x2,x3). To check
that this function is correlation immune of order 1, we must check all 1-variable subsets
with their possible values and ensure that the outputs are independent of the differing inputs.
The case where f = 0 should also be checked, but the result is the same; P = 1

21 =
1
2 .

x3 x2 x1 f

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

P[x1 = 0| f = 1] = 2/4

P[x1 = 1| f = 1] = 2/4

P[x2 = 0| f = 1] = 2/4

P[x2 = 1| f = 1] = 2/4

P[x3 = 0| f = 1] = 2/4

P[x3 = 1| f = 1] = 2/4

Table 4.6: A 3-Variable BF, Correlation Immune of Order k = 1.

4.3.4 Resiliency
A year after Siegenthaler’s introduction of correlation immunity, Benny Chor et al. intro-
duced the term resiliency [54]. In [54], the authors describe a function f to be t-resilient

if for every subset T of n input variables of cardinality t, f is unbiased with respect to T ,
i.e., f as a random variable is unbiased. In simpler fashion, a BF is k-resilient if it is both
balanced and correlation immune of order k [39].

Siegenthaler was nevertheless influential in explaining how resiliency relates to correla-
tion attacks. If a function is not k-resilient, then a correlation can be found between the

60

output bits and at most k input bits [40]. There is an obvious connection here with the
algebraic degree of a BF. Due to Siegenthaler, we know that for a function in n vari-
ables of degree d, and correlation immune of order k, the following inequality holds:
k+d ≤ n [52]. Furthermore, we also know that if the function is balanced and k < n−1,
then k + d ≤ n− 1 =⇒ d ≤ n− k− 1. In cryptography, we aim to make the resiliency
as high as possible. Resiliency, along with several of these other properties, can also be
described in terms of the Walsh Transform (see Section 4.5).

4.3.5 Algebraic Immunity
The concept of algebraic immunity also arose from the study of LFSR based stream ciphers
vulnerable to correlation attacks. Nicolas Courtois [55] first proposed algebraic attacks on
these stream ciphers that either had a low-degree BF combiner or that the BF could be
approximated with a low-degree polynomial. Courtois and Meier [56] later proved that
this type of attack could be applied by multiplying a high-degree combiner with a carefully
chosen low degree multivariate polynomial. The idea behind an algebraic attack rests on
the fact that an adversary has access to some plaintext and corresponding ciphertext bits,
as well as some bits of the key stream. Since the key stream is a result of the combining
function, this is not too wild of an assumption. The adversary then deduces a series of low
degree multivariate polynomials from each of the combiner output states, for which the key
bits are solutions to. The resulting system of multivariate low degree polynomials can be
solved efficiently and the secret key can be recovered [42, 53, 55, 56].

A nonzero polynomial g is called an annihilator of a polynomial f assuming f g = 0. With
respect to the preceding paragraph, an annihilator of low degree aids in the implementation
of an algebraic attack. Similarly, we need to consider multiples of f , i.e., f ⊕1, since low
degree annihilators of f ⊕1 also give way to algebraic attacks [39,40]. Thus, the algebraic

immunity of f , denoted by AI(f), is the minimum degree of g such that g is an annihilator
of f or f ⊕1, i.e., AI(f) = min{deg(g) : f g = 0 or (f ⊕1)g = 0}.

EXAMPLE 4.3.2. Given f (x1,x2,x3,x4) = x1x2x3x4 and g(x1,x2,x3,x4) = x1⊕ x2⊕ x3⊕
x4, the algebraic immunity of f is 1, AI(f) = 1. Since f g = x1x2x3x4 ⊕ x1x2x3x4 ⊕
x1x2x3x4⊕ x1x2x3x4 = 0, the minimum degree of g to satisfy this equation is 1, after [53].

61

4.3.6 Strict Avalanche Criteria and Propagation Criteria
Recall that in the explanation of the DES round function, we mentioned the notion of an
avalanche effect. Feistel [57] was the first to use this term with regards to error detection
in codes. He noted that a single error in plaintext could cause an avalanche of errors in
the rest of the message when encrypted with a computer. Today, the avalanche effect is
observed if a small change in function input yields a large change in function output [39].
With respect to a BF, the avalanche effect is present if, on average, half of the output bits
change when one bit in the input is complemented (i.e., ⊕1) [58].

The strict avalanche criteria (SAC) is an extension of the avalanche effect, requiring that
“each output bit should change with a probability of one half whenever a single output bit is
complemented” [58]. Formally, A. F. Webster and Tavares defined SAC in a more precise
manner.

Definition 4.3.3. Let X and Xi be n-bit binary plaintext vectors, such that X and Xi differ
in one bit, 1≤ i≤ n, i.e., wt(X⊕Xi) = 1. Let Vi = Y ⊕Yi, where Y = f (X),Yi = f (Xi) and
f is a function. If f satisfies the SAC, then the probability that each bit in Vi is equal to one
should be one half over the set of all possible plaintext vectors X and Xi.

Kwangjo Kim and others [49,59,60] provide a more implementable definition of SAC. Let
ccc(n)i denote an n dimensional vector with Hamming weight one at the i-th position.

Definition 4.3.4. A function f : Fn
2 → Fm

2 satisfies the SAC if for all i (1 ≤ i ≤ n) the
following equations hold:

∑
xxx∈Fn

2

(
f (xxx)⊕ f (xxx⊕ ccc(n)i)

)
= (2n−1,2n−1, . . . ,2n−1). (4.10)

Definition 4.3.4 is the most general definition for any function, but since we are mainly
concerned with BFs, the codomain is just F2 and the right hand side of the equation is just
2n−1. Thus, a one bit change in the 2n input vectors results in an output change for 2n−1

of those vectors (i.e., exactly half). Example 4.3.5 demonstrates the SAC for a BF on three
variables.

EXAMPLE 4.3.5. In this BF with n = 3, the possible one-bit changes are reflected to

62

the right of the original function output column. Note that for each bit change, the output
changes for exactly 22 = 4 vectors.

x3 x2 x1 f ⊕100 ⊕010 ⊕001

0 0 0 1 0 1 1
0 0 1 1 1 0 1
0 1 0 1 1 1 0
0 1 1 0 1 1 1
1 0 0 0 1 1 1
1 0 1 1 1 1 0
1 1 0 1 1 0 1
1 1 1 1 0 1 1

Table 4.7: A 3-Variable BF Satisfying the SAC, after [39].

Another result that follows from the SAC is balance in the Hamming weights between the
contrasting outputs. This result is also from Webster and Tavares [58], but is formalized by
Cusick and Stănică [39] as a lemma.

Lemma 4.3.6. A BF f : Fn
2 → F2 satisfies the SAC iff the function f (xxx)⊕ f (xxx⊕ aaa) is

balanced for every aaa in Fn
2 with Hamming weight 1.

As visualization of this lemma, refer back to Table 4.7. Note that the XOR between the f

column and any of the bit change columns is a balanced string. Although it was developed
in 1986, SAC was generalized a few years later.

In 1990, Bart Preneel et al. generalized SAC as propagation criteria. A BF satisfies the
propagation criteria of degree kkk, denoted as PC(k), if f (xxx) changes with a probability
of one half whenever i (1 ≤ i ≤ k) of the n bits of xxx are complemented [61]. Given this
definition, SAC is equivalent to PC(1).

Just like with SAC, there are alternate ways to present the definition of PC. One such
definition relies on the concept of a directional derivative of a BF. If f is a BF in n

variables and bbb is any vector in Fn
2, then the derivative of f in the direction of bbb is

63

Dbbb f (xxx) = f (xxx)⊕ f (xxx⊕ bbb) [40]. Hence, a BF f (xxx) in n variables satisfies PC(k) if and
only if all of the directional derivatives are balanced functions, i.e., for all aaa ∈ E ⊂ Fn

2, the
derivative Daaa f (xxx) = f (xxx)⊕ f (xxx⊕aaa) is balanced [39, 40].

4.3.7 Other Properties
There are other criteria for BFs that are not as prevalent in mainstream literature, but have
gained notoriety in recent research. We start with two properties that have either already
been defined or do not require definition. The first of these is the aforementionied alge-

braic degree. The algebraic degree contributes to the complexity of a BF and is often a
factor in attacks on ciphers; we typically want to employ BFs with the highest algebraic
degree possible. Algebraic attacks are very efficient against ciphers employing low degree
polynomials [42], and the complexity of the differential attack of higher order depends on
the highest degree of the BF used in the cryptosystem [45, 62].

Just because a BF has high degree, however, does not make it cryptographically relevant.
We saw in Subsection 4.3.2 that via a complement operation, a function was transformed
into a monomial. Even though this monomial might have high algebraic degree, it is weak
when compared to a polynomial of same degree. Thus, the other property we consider
is the number of terms in the ANF. The BFs that were discussed in Subsection 4.3.3 as
nonlinear combining functions in stream based LFSRs need to have high algebraic degree
and many terms in the ANF in order to resist key stream generation by the Berlekamp-
Massey Algorithm [45]. The number of terms in the ANF is not a stand alone property
however. Along with the same reasoning just presented, a BF with many terms could
have an affine equivalent function under a transformation. Thus, this property needs to be
considered with other properties, such as affine invariance, algebraic degree, etc.

Motivated by the work of Meier and Staffelbach [51], Carlet introduced a new property with
respect to the number of terms in the ANF, i.e., an affine invariant parameter. Carlet called
this property the algebraic thickness of a BF. The algebraic thickness, denoted by T (f),
is defined to be the minimum number of terms in the ANF of the set of functions f ◦A,
where A is the general affine group, and A ranges over the set of all affine automorphisms
of Fn

2 [45,63,64]. As Carlet points out, we would like to work with BFs having the highest
possible algebraic thickness, but “classical BFs have small algebraic thickness” [45]. Carlet

64

is not explicit in what he denotes as classic, though one can infer that he means those BFs
we are most interested in with respect to cryptographic applications. The algebraic thick-
ness is bounded by the number of variables in the polynomial, i.e., 2n, but it is unproven
that there exist functions f for which T (f)> 2n−1 [45].

There are still other parameters that exist for which the interested reader should consult
the references. One such example is the global avalanche criteria (GAC) as presented
by Xian-Mo Zhang and Yuliang Zheng [65]. Both SAC and PC are known to be local

characteristics of a function, namely that they guarantee avalanche features for vectors of
Hamming weight either 1 or up to k. SAC and PC are restrictive, however, because they can
admit functions having a large Hamming weight with vectors as linear structures. SAC also
requires that f (xxx)⊕ f (xxx⊕aaa) is balanced, which rules out bent functions (see next section).
Other properties include maximum correlation [40, 66], nonhomomorphicity [40, 67], and
non-k-normality [40].

4.4 Bent Boolean Functions
We have mentioned bent functions several times, and now a short background is presented.
Since bent BFs are not the focus of this thesis, the reader should consult the works of John
Dillon, Oscar Rothaus, Robert McFarland, W. Meier, and others [39, 51, 68–70] for more
on this subject.

Bent BFs are desirable in cryptography because they achieve the maximum nonlinearity for
a BF, but they are difficult to implement. One such reason was mentioned in the previous
section—bent functions have desirable properties, but they are not balanced, and we want
balanced functions as S-Boxes.

Definition 4.4.1. A BF f on Fn
2 is called bent if its Hamming distance to the set of all n-

variable affine functions equals 2n−1−2
n
2−1. In other words, a bent function achieves the

maximum possible nonlinearity, N f , for any BF in n variables. Furthermore, this distance
is only achieved when n is even [40, 45].

As a result of the definition, bent functions also achieve many other characteristics. If an
n-variable BF is bent with n even, then it satisfies PC(n) [39, 40]. Meier and Staffelbach’s

65

perfect nonlinear functions are essentially an analagous form of bent functions [51]. There
is also a definition of bent functions that uses the Walsh transform (see next section).

Although it seems that bent functions are desirable and we should be using them, the mys-
tery surrounding them lies in construction. We know the total number of bent functions for
n = 2,4,6,8 variables, but we do not know the total for n≥ 10. Thus, we have no means to
characterize or classify this set of bent functions under the general affine group [40]. The
main difficulty here lies in the space of possible bent functions. For n = 2, there are 16
possible BFs and eight total bent functions. Remarkably, for n = 8, there are 2256 BFs and
approximately 2106.291 total bent functions [39, 71].

4.5 Walsh Transform
Most readers are familiar with the concept of a mathematical transform. A transform is a
relation that takes a function in one domain or basis and transforms it into a function in
another domain or basis. A classic example of this is the Laplace Transform, which takes a
function f (t) and outputs a new function F(s). We now examine another famous transform,
the Fourier Transform, which allows a transfer between the time (or spatial) domain and
the frequency domain.

The Fourier Transform has many applications, some of which include acoustics, digital
signal processing, physics, engineering, and image processing. It is essentially an extension
of the Fourier series, in which periodic behavior is modeled by an infinite sum of sines and
cosines. We are interested in the non-continuous version of the Fourier Transform called
the discrete Fourier Transform (DFT). In the DFT, the function used as the input is discrete
and its values are given over a finite interval. This transform is also invertible so that we
can move back and forth between bases.

With regard to BFs, the DFT is an invertible mapping of the function values onto a set of
coefficients, called Fourier coefficients [72]. Knowledge of the Fourier coefficients gives
information about the function, such as computational complexity and other properties of
BFs. In particular, the DFT of a function gives the weights of all functions of the form
f ⊕ `, where ` is affine [40]. The DFT of BFs is also called the Walsh Transform (WT).

Recall from linear algebra that a basis for a vector space is a set of linearly independent

66

vectors that can span that space, i.e., every vector in the vector space can be represented
by a linear combination of the basis vectors. By doing so, we find the coordinates of every
point in the space with respect to that basis. This can be difficult if the basis vectors are not
orthogonal. If we can find an orthogonal basis for the vector space, then we can define an
inner (dot) product and expressing all vectors in the vector space is much easier.

In the most general sense, a BF is a 0-1 valued real function defined on {0,1}n, i.e., f :
Fn

2→ R. If we restrict the codomain of f to only the two-valued functions on this domain,
then we consider f : Fn

2→ F2. The domain of the space of all these functions is an Abelian
group, for which we define a group character, Qwww(xxx) = (−1)<www·xxx>. The notation < www ·xxx >
is the inner (dot) product on vectors over F2, w1x1⊕w2x2⊕·· ·⊕wnxn. The set of functions
{Qwww : www∈ Fn

2} forms an orthogonal basis for the vector space Fn
2 [72]. The WT then defines

the coefficients of the BF f with respect to this orthogonal basis.

Definition 4.5.1. [39, 73] If f is any real-valued function on Fn
2, i.e., f : Fn

2→ R, then the
Walsh Transform (WT)4 of f on a vector www is defined by

F(www) =W (f)(www) = ∑
xxx∈Fn

2

f (xxx) · (−1)<www·xxx>, (4.11)

where www ∈ Fn
2 and < www · xxx >= w1x1⊕w2x2⊕ ·· ·⊕wnxn over F2. The function f can be

recovered from F(www) by the inverse Walsh Transform

f (xxx) =W−1(F)(xxx) = 2−n
∑

www∈Fn
2

F(www) · (−1)<www·xxx>. (4.12)

Of course, the BF f takes on the real values {0,1}, but sometimes it is easier to work with
BFs that take on values in the range {−1,1}. This alternate group of functions will be
denoted by f̂ . The function f̂ is related to the function f in the following manner

f̂ (xxx) = (−1) f (xxx) or f̂ (xxx) = 1−2 f (xxx). (4.13)

4We acknowledge that the nomenclature within the Walsh Transform is varied. Some sources call
this definition the Hadamard Transform, the discrete Fourier-Walsh-Hadamard Transform, or the Walsh-
Hadamard Transform. Unfortunately, there is no standard definition, but the notation presented here is
adopted from [39, 73].

67

The function on the left in Equation 4.13 is often referred to as the sign function, for which
the WT also exists. This transform, however, we will call the Walsh-Hadamard Transform
(WHT).

Definition 4.5.2. The Walsh-Hadamard Transform of f̂ is given by

F̂(www) =W (f̂)(www) = ∑
xxx∈Fn

2

(−1) f (xxx)⊕<www·xxx>. (4.14)

In the same way that f and f̂ are related, there is also a relationship between the WT and
the WHT. This is a rather important relationship, thus it is stated as a lemma. The simple
proof is omitted, but is available in [39].

Lemma 4.5.3. If f̂ (xxx) = (−1) f (xxx), then

F̂(www) =−2F(www)+2n
δ (www), (4.15)

or

F(www) = 2n−1
δ (www)− 1

2
F̂(www), (4.16)

where δ (www) is the Kronecker delta function (sometimes called the Dirac symbol) defined
as

δ (www) =

1, if www = 000

0, otherwise.

Equations 4.11 and 4.14 each yield a vector of Fourier coefficients as www varies, also known
as Walsh coefficients. These lists of 2n coefficients are called the Walsh spectrum of f and
the Walsh-Hadamard spectrum of f̂ , respectively [39]. For general purposes, we refer to
either list as the Walsh spectrum of a BF, although context should be clear upon which
version is presented. The Walsh spectrum is another unique representation of a BF and is
often used as a means to explicitly define certain cryptographic properties on a function.
We will return to this notion shortly, but first we present an example of the WT.

68

EXAMPLE 4.5.4. Both the WT and WHT involve sums over the entire vector space Fn
2.

Thus, by-hand calculations are rarely practical. Consider the BF defined as f : F2
2→ F2,

with ANF given by 1⊕ x1⊕ x2. The truth table representation is given in Table 4.8.

x2 x1 f

0 0 1
0 1 0
1 0 0
1 1 1

Table 4.8: Truth Table Representation for 1⊕ x1⊕ x2.

WT

F(www) =W (f)(www) = ∑
xxx∈F2

2

f (xxx) · (−1)<www·xxx>

F(00) = 1(−1)0 +0+0+1(−1)0 = 2

F(01) = 1(−1)0 +0+0+1(−1)1 = 0

F(10) = 1(−1)0 +0+0+1(−1)1 = 0

F(11) = 1(−1)0 +0+0+1(−1)2 = 2

Walsh spectrum = (2,0,0,2)

WHT

F̂(www) =W (f̂)(www) = ∑
xxx∈Fn

2

(−1) f (xxx)⊕<www·xxx>

F̂(00) = (−1)1⊕0 +(−1)0⊕0 +(−1)0⊕0 +(−1)1⊕0 = 0

F̂(01) = (−1)1 +(−1)1 +(−1)0 +(−1)0 = 0

F̂(10) = (−1)1 +(−1)0 +(−1)1 +(−1)0 = 0

F̂(11) = (−1)1 +(−1)1 +(−1)1 +(−1)1 =−4

Walsh-Hadamard spectrum = (0,0,0,-4)

69

The reader can easily verify the relation between the two spectra using Equation 4.15 and
that the truth table output can be recovered by the inverse in Equation 4.12. Note that the
Kronecker delta function is only equal to one when www is the zero vector.

Since the WT operates as a DFT, the classical method of solving for the Fourier coefficients
is not an integral problem but rather a matrix problem. Thus, the Walsh spectrum can also
be found by means of Hadamard matrices. Hadamard matrices are recursively constructed
and consist of ±1s. Formally [39], a Hadamard matrix H of order n is an n× n matrix
of ±1s such that HHT = nIn, where HT is the transpose of H and In is the n× n identity
matrix. The recursion is given as

H0 = [1]; H1 =

[
1 1
1 −1

]
, and Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
. (4.17)

Thus, H2 is constructed in typical block matrix style as
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Therefore, expressed as a matrix product, the WT is given by [46, 61]

[F] = Hn · [f], (4.18)

where [F] is a column vector of the Walsh spectrum values and [f] is a column vector of the
function values. Returning to Example 4.5.4, we can compute the Walsh spectrum using
the Hadamard matrix, but again note for large values of n, computations by-hand become
impractical quickly.

[F] =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

1
0
0
1

=

2
0
0
2

Similarly, the WHT can be expressed in terms of the Hadamard matrix as [F̂] =Hn · [(−1) f],

70

where [F̂] is a column vector of the Walsh-Hadamard spectrum and [(−1) f] is a column
vector of negative ones raised to the function values [46].

[F̂] =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

−1
1
1
−1

=

0
0
0
−4

We now return to the concept alluded to in the previous section concerning the WT and
cryptographic properties of BFs. There are a number of properties related to the WT/WHT,
namely because the transform is a linear mapping and provides information on nonlinear-
ity [46, 72]. We must be careful to define which transform is being used though, which
should be clear in the notation. Other properties, such as SAC and PC, are related to the
autocorrelation function, which we do not discuss here but can be found in [39].

Balance: [46] A BF is balanced if F̂(000) = 0. This feature is observed in Example 4.5.4.

Nonlinearity: The nonlinearity of f is determined by the WHT of f̂ [39], that is,

N f = 2n−1− 1
2

max
uuu∈Fn

2

|F̂(uuu)|, (4.19)

where the bars represent absolute value. The function in Example 4.5.4 has nonlinearity
zero since 21− 1

2(4) = 0.

Correlation Immunity: [39] A BF is correlation immune of order k, 1≤ k≤ n, if and only
if F̂(www) = 0 for 1 ≤ wt(www) ≤ k. The function in Example 4.5.4 is correlation immune of
order one since both F̂(01) = 0 and F̂(10) = 0.

Resiliency: [46] Since resiliency also includes correlation immunity, the same stipulations
on the WHT apply here. Thus, the resiliency for the function in Example 4.5.4 is also one.

Bent BFs: A BF in n variables is bent if and only if F̂(uuu) = ±2n/2 for all uuu ∈ Fn
2 [51, 68].

The function f (xxx) = x1x2 on F2
2 is bent since the Walsh-Hadamard spectrum is |F̂(uuu)| =

22/2 =(2,2,2,−2). Another version of Fourier spectrum is the energy spectrum. The energy
spectrum is defined as the square modulus of the Fourier transform [61], i.e., F̂2. In this

71

manner, all coefficients are positive constants. With respect to the energy spectrum of a
BF, we often characterize a bent function as having a flat spectrum.

4.6 Vectorial Boolean Functions
Recall that an S-Box is a mapping or substitution from an m-bit input to an n-bit output,
where m and n need not be equal. Over the binary field, this is represented by f : Fm

2 → Fn
2.

These functions are also called (m,n)-functions, multi-output BFs, vectorial BFs, and
S-Boxes [48]. Vectorial BFs employed in iterative block ciphers are used to provide confu-
sion in the algorithm. Much work in the area of vectorial BFs for cryptography has been
done by Carlet [40, 48].

Given that m and n are positive integers, if a function F exists as an (m,n)-function, then
the BFs f1, f2, . . . , fn defined at every xxx ∈ Fm

2 by F(xxx) = (f1(xxx), . . . , fn(xxx)) are called the
coordinate functions of F [48]. In the case of DES, each of the eight S-Boxes are functions
f : F6

2 → F4
2. Within each S-Box, we treat the four rows as coordinate functions. Thus,

for any S-Box, there exists F(xxx) = (f1(xxx), f2(xxx), f3(xxx), f4(xxx)), where each fi is a mapping
from F6

2 to F2. Our aim in this thesis is to examine the coordinate functions of the S-Boxes.

There has been extensive research on the construction of cryptographically good S-Boxes.
The DES creators stated that the boxes were built to resist a differential attack. One such
method for doing so requires that the output of an (m,n)-function F to its derivatives
Da(xxx) = F(xxx)+F(xxx+aaa) must be distributed as uniformly as possible [48]. There is also a
method for designing against Matsui’s linear attack, which deals with linear combinations
of the coordinate functions [48].

The DES S-Boxes have received much attention over the years. Webster, Tavares, and
Adams, while writing in terms of generic S-Boxes, have always used DES as influence
in their analysis. For example, in [58], the authors show that the set of DES S-Boxes do
not satisfy the SAC; the probability that an output bit will change when a single input
bit is complemented varies from 0.43 to 0.93. Granted, SAC did not exist at the time
when IBM created DES. S-Box construction has also been studied from the viewpoints of
random generation versus systematic design. While random generation is often effective,
the design criteria mentioned by Adams and Tavares [50] is worth noting.

72

According to Adams and Tavares, an S-Box must satisfy the following criteria to be “cryp-
tographically desirable”:

1. bijection;
2. nonlinearity;
3. strict avalanche;
4. independence of output bits.

Property (1) observes that a 2n× n S-Box is bijective, i.e., invertible (which may or may
not be necessary). In doing so, the input vectors map to distinct output vectors and the
output vectors appear only once per stage. Property (2) is obvious, but in order to ensure
nonlinearity at both the bit level and integer level, the S-Box must utilize n nonlinear BFs.
As a consequence of Property (1), Property (2) is typically achieved in the inverse S-Box.
Property (3) was introduced in [58], but an S-Box as a whole possesses the SAC if it has
Properties (1) and (4), and all n BFs fulfill the SAC. To show this, Adams and Tavares
used Forré’s method of construction for SAC-fulfilling BFs [73]. Property (4) is intended
to resist certain correlation attacks. Others such as K. Kim have done more recent research
into the construction of good S-Boxes; for a survey of these techniques, consult [47,49,59,
60].

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

CHAPTER 5:
Basic Graph Theory

Graph theory is the study of graphs, but not the typical function graph depicted on say the
x− y plane. Instead, graph theory examines the relations between objects, be them people,
places, devices, molecules, etc. Since the field implicates models of everyday life, some
refer to graphs as networks. Most scholars date the origin of graph theory to the famous
Königsberg bridge problem solved by Euler in 1736. While it is a fairly old discipline,
tremendous advances in graph theory, especially regarding networks, have spurned interest
in the field within the last century. There are many terms within graph theory that are not
defined here, but the reader can consult a standard graph theory text such as [74] for more
insight.

5.1 Definitions
A graph is a collection of objects called vertices and the relations between them called
edges. Sometimes, vertices are also called nodes while edges are also called arcs.

Definition 5.1.1. [74] A graph G is an ordered pair (V,E), where V is the finite set of
vertices of G and E is the set of two-element subsets of V called edges. V is called the
vertex set of G and E is called the edge set of G. The cardinality of V is called the order
of the graph G, denoted by n.

A graph can be uniquely represented by the ordered pair (V,E) or by a pictorial model.
Consider Example 5.1.2 where this is depicted.

EXAMPLE 5.1.2. In Figure 5.1, G is given by (V,E), where V = {v1,v2,v3,v4,v5} and
E =

{
{v1,v2},{v2,v3},{v3,v4},{v4,v5},{v1,v5},{v1,v3},{v1,v4}

}
. Ordinarily, we omit

the set notation on the vertex pairs, so E can be written as
E = {v1v2, v2v3, v3v4, v4v5, v1v5, v1v3, v1v4}. This graph is undirected, in that there is no
orientation on the edges. This graph is also simple because there are no loops or multiple

edges.

75

v1

v2

v3

v4

v5

Figure 5.1: A Graph G on n = 5 Vertices.

Note in Example 5.1.2 that if the edge viv j is in the edge set of G, then it appears as a
line segment (or curve) connecting vertex vi with vertex v j. If the edge viv j exists, i.e.,
viv j ∈ E(G), then we say that vi and v j are adjacent. If vi and v j are adjacent, then they
are also referred to as neighbors. If an edge e joins vertices vi and v j, then we say that e is
incident with vi (as well as v j).

Some graphs allow for multiple connections between two vertices. For example, an airline
might plan several routes between Detroit and San Francisco, depending on weather, traffic,
or other variables. In this case, the airline route graph can depict multiple routes, which we
call a multigraph. If an edge is also permitted to join a vertex to itself, then this graph is
called a pseudograph. Figure 5.2 depicts these types of graphs.

Figure 5.2: Multigraph and Pseudograph, Respectively.

76

A multigraph contains at least one pair of distinct vertices that are joined by multiple (par-
allel) edges. Multigraphs do not permit loops. A pseudograph permits multiple edges
and loops, but does not necessarily contain multiple edges. In this thesis we will consider
simple graphs and pseudographs.

The degree of a vertex can be defined in two synonymous ways. The degree of v ∈ V (G)

is equal to the number of edges incident with v. We also have that the degree of v ∈V (G)

is the number of vertices adjacent to v [74]. The degrees of the vertices within the graphs
of Figure 5.2 can be represented as sequences: (3,3,3,5) and (3,3,4,4,4)5, respectively.
There are various rules, theorems, and bounds pertaining to vertex degree, but again we
assume that the reader has knowledge of these or can consult a standard reference.

Additionally, a graph G is regular if all vertices of G have the same degree. A graph G is
r-regular if deg(v) = r for all v ∈V (G).

5.2 Matrix Representations
A graph can also be represented by a matrix describing the relations on vertices and edges.
The most widely used matrix to describe a graph is the adjacency matrix. Like the name
implies, the adjacency matrix displays the vertex adjacencies of the edge set of G (as well
as the non-adjacencies).

Definition 5.2.1. [74] Assume that G is a simple, undirected graph of order n with vertex
set {v1,v2, . . . ,vn}. The adjacency matrix of G is the n×n matrix A = [ai j], whose entries
ai j are given by

ai j =

1, if viv j ∈ E(G)

0, otherwise.

Figure 5.3 illustrates the concept of an adjacency matrix. The labeling of vertices outside
the adjacency matrix is not a common practice, but this is displayed for the benefit of the
reader.

5Note that for the loop, we counted the degree twice for the loop. While some graph theorists and authors
only consider a loop to contribute one towards the vertex degree, the majority of texts double count the degree
for a loop.

77

a

b

m

d

c

l

A =

a b c d l m

a 0 1 0 0 0 1
b 1 0 1 1 0 1
c 0 1 0 1 1 1
d 0 1 1 0 1 0
l 0 0 1 1 0 1
m 1 1 1 0 1 0

Figure 5.3: A Graph and Its Associated Symmetric Adjacency Matrix.

There are a couple of observations [75, 76] to make with respect to the adjacency matrix
for a simple, undirected graph.

i) A is a real and symmetric matrix;
ii) The row sums for each i of A equal the degree of each vi;
iii) The diagonal entries of A are zero;

iv) The trace of A is zero, i.e., tr(A) =
n
∑

i=1
aii = 0;

v) There is a one-to-one correspondence between the graph G and its associated adjacency
matrix A (up to isomorphism and rearrangement of vertices in A);

vi) A is not unique, since we can reorder the vertices and arrive at a different representation.

Adjacency matrices for multigraphs are formed in a similar manner, in that the entry ai j is
the number of edges vetween vi and v j. In a pseudograph, however, we must now account
for loops which implies nonzero entries on the diagonal. Unfortunately, there is no standard
method to handle the entry aii in the adjacency matrix of a pseudograph. Some propose
that a loop should be given a weight of two (i.e., the entry aii is twice the number of loops
attached to the vertex vi [77]). This vertex-centric approach allows the adjacency matrix to
hold the properties of row sums equaling the degree as well as the First Theorem of Graph
Theory.6 Others model a loop should be given a weight of one, which leans toward an

78

edge-centric approach [78]. For this thesis, we use the latter approach, the reasons for
which will become apparent in Section 5.4. Consider Figure 5.4 as an example of our
approach to pseudographs.

a

b

m

d

c

l

A =

a b c d l m

a 0 1 0 0 0 1
b 1 0 1 1 0 1
c 0 1 0 1 1 1
d 0 1 1 1 1 0
l 0 0 1 1 1 1
m 1 1 1 0 1 0

Figure 5.4: A Pseudograph and Its Associated Adjacency Matrix.

The most common approach to multigraphs and pseudographs is to consider them as
weighted graphs. In this respect, we assign each edge a weight. If an edge is not present,
it has a weight of zero. Thus, this allows all graphs to be treated as weighted graphs,
with an assigned weight function satisfying W : V ×V → R, with w(i, j) = w(j, i) and
w(i, j)≥ 0 [79]. The weight function W also has the properties that w(i, j)> 0 if and only
if i j ∈ E(G). With this application, a simple, undirected, and unweighted graph is a special
case where the weights are either one or zero. Therefore, we use the terms adjacency ma-

trix and matrix of weights interchangeably. This weighting does allow for the possibility
of an adjacency matrix that is not in the traditional 0-1 format, but given our approach in
Figure 5.4 we will not consider this.

Another matrix representation for a graph is the Laplacian. The Laplacian matrix has a long
history dating back to German physicist Gustav Kirchhoff. In 1847, Kirchhoff developed
the basis for the matrix-tree theorem (see [74]), which uses the Laplacian matrix in its
construction. Therefore, the Laplacian is also referred to as the Kirchhoff matrix [80].

6The First Theorem of Graph Theory states that the sum of the degrees in a graph G is equal to twice the
number of edges in G.

79

Definition 5.2.2. [79,80] Let G be a graph, possibly weighted, of order n. The Laplacian
matrix of G is the n×n matrix L = [Li j], whose entries Li j are given by

L = D−A,

where D is the diagonal matrix indexed by V (G), with i, j ∈V (G), deg(i) = d(i) = ∑
i

ai j =

∑
i

w(i, j) and A is the adjacency matrix. In an equivalent fashion,

L =

d(i)−w(i, i), if i = j

−w(i, j), if i j ∈ E(G)

0, otherwise.

Unfortunately, the Laplacian does not have a one-to-one correspondence with a graph G.
It is mainly used to deduce properties of the (possibly unknown) graph. However, it is a
real symmetric matrix, and in fact the Laplacian is a positive semidefinite, singular matrix.
Consider Example 5.2.3 in which the Laplacian is computed for the graph in Figure 5.4.

EXAMPLE 5.2.3.

L=D−A=

2 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

−

0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 1 1
0 1 1 1 1 0
0 0 1 1 1 1
1 1 1 0 1 0

=

2 −1 0 0 0 −1
−1 4 −1 −1 0 −1
0 −1 4 −1 −1 −1
0 −1 −1 3 −1 0
0 0 −1 −1 3 −1
−1 −1 −1 0 −1 4

There are still other matrices that can be used to represent a graph such as the incidence ma-

trix, distance matrix, normalized Laplacian, signless normalized Laplacian, and signless

Laplacian. However, these matrices are not the focus of this thesis.

80

5.3 Spectral Graph Theory
The field of linear algebra is rich with techniques for examining structural properties of
matrices. With the ability to represent a graph by a matrix, these techniques now become
available to the user. This field is known as algebraic graph theory, in which we attempt to
determine properties of graphs using algebraic properties of the matrices representing them
[81, 82]. Spectral graph theory is a subfield of algebraic graph theory which specifically
aims to examine graph properties using the spectrum of a graph’s associated matrix. The
classic references on this subject are found in the works of Biggs [76], Cvetkovíc et al. [77],
and Chung [79]. The importance of spectral graph theory can be observed in the following
quotations.

Just as astronomers study stellar spectra to determine the make-up of distant
stars, one of the main goals in graph theory is to deduce the principal properties
and structure of a graph from its graph spectrum. The spectral approach for
general graphs is a step in this direction. There is no question that eigenvalues
play a central role in our fundamental understanding of graphs. [79]

Spectral graph theory is a useful subject. The founders of Google computed the
Perron-Frobenius eigenvector of the web graph and became billionaires. [81]

5.3.1 Definitions
Definition 5.3.1. [76, 81] The (ordinary) spectrum of a finite graph G of order n is the
spectrum of the adjacency matrix A(G), that is the set of n eigenvalues of A(G) together
with their (algebraic) multiplicities. If the distinct eigenvalues of A(G) are λ1 ≤ λ2 ≤ ·· · ≤
λn and their multiplicities are m(λ1),m(λ2), . . . ,m(λn), then we shall write

Spec G =

(
λ1 λ2 · · · λn

m(λ1) m(λ2) · · · m(λn)

)
.

Similarly, the Laplace spectrum of a finite graph G is the spectrum of the Laplacian matrix
L [81]. Note that Definition 5.3.1 does not include the corresponding eigenvectors. This is
mainly due to the fact that eigenvectors are not unique, and that for a given eigenvalue λ ,

81

any scalar multiple of a nonzero vector x satisfies the eigenvalue problem: Ax = λx. There
are certain graph properties that do account for eigenvectors, but in general we will not be
concerned with them here.

Recall that to find the n eigenvalues of an n× n matrix A, we must find the n roots of
the characteristic polynomial p(λ) = det(A− λ I). Since the adjacency matrix A is real
and symmetric, its eigenvalues are also real numbers. Likewise, since the Laplacian L is
positive semidefinite, its eigenvalues are all nonnegative (i.e., λi≥ 0 for all i∈ {1,2, . . . ,n})
and a zero eigenvalue is guaranteed (since the row sums are zero) [80]. Additionally, the
algebraic and geometric multiplicity of each eigenvalue is the same, hence multiplicity is
used interchangeably.

5.3.2 Some Known Results
We now present some of the many known results on graph spectra. Some of these deal with
the adjacency matrix and some deal with the Laplacian. From context it should be clear
which matrix is being used. Also, it should be apparent that if λ is an eigenvalue of the
adjacency matrix A for an r-regular graph G, then r−λ is an eigenvalue of the Laplacian L.
For added clarity, we refer to the eigenvalues of A as λ1,λ2, . . . ,λn and the eigenvalues of L
as µ1,µ2, . . . ,µn. At certain points, we refer to the eigenvalues of A or L as the eigenvalues
of G.

Degree
If G has maximum degree ∆(G), then |λ | ≤ ∆(G) for every eigenvalue of G [83].

The sum of the Laplacian eigenvalues is equal to the degree sum of a graph [84], i.e.,
n
∑

i=1
µi =

n
∑

i=1
d(i).

Regular Graphs
An r-regular graph G has row sums equal to r in the adjacency matrix of weights. The
following results [76, 81, 83] also hold:

1. r is an eigenvalue of G;
2. For all eigenvalues λ of G, we have |λ | ≤ r;
3. If r is an eigenvalue, then the all-1 vector is an eigenvector of G.

82

Connectedness
A graph G is connected if every pair of vertices of G is connected, i.e., there is a path
between every two vertices of G. A u−v path in a graph is a sequence of vertices beginning
with u and ending at v such that consecutive vertices in the sequence are adjacent, with the
additional restriction that no vertices are repeated [74].

If a graph G is connected, then: (1) the largest eigenvalue of A has multiplicity one, and (2)
the second smallest eigenvalue of L is greater than zero [85, 86].

Closely related to idea of connectivity is the number of components of a graph. A compo-
nent of G is a connected subgraph of G that is not a proper subgraph of any other connected
subgraph of G [74]. The number of components of a graph G is denoted by k(G). As re-
lated to spectra, k(G) is equal to the multiplicity of the smallest eigenvalue µ = 0 of the
Laplacian L [86]. Thus, a graph is connected if and only if k(G) = 1, since it only has one
component.

A graph G is bipartite if its vertex set can be partitioned into two distinct sets U and W

such that every edge of G contains a vertex from U and a vertex from W [74]. As relating
to spectra, a graph G is bipartite if and only if Spec L = Spec Ls, where Ls is the signless
Laplacian [81]. Recent research on internet topology has also revealed that a graph is
bipartite if the normalized Laplacian has an eigenvalue of 2 [87, 88]. Additionally, an r-
regular graph is bipartite if and only if λ1 =−r [89].

Diameter
Given a u− v path, the length of a path is the number of edges between u and v. The
distance between u and v is the length of the smallest u−v path in a graph G. The diameter

of a graph is the greatest distance between any two vertices of a connected G [74]. The
diameter is often used to get a sense of how large a component is, especially useful when
analyzing large networks. As relating to spectra [76, 77], if a connected graph G has d

distinct eigenvalues, then its diameter is bounded above by d− 1, i.e., diam(G) ≤ d− 1.
This same result holds for Laplacian eigenvalues [81]. A lower bound on the diameter of a
graph G of order n is also given in terms of the second smallest Laplacian eigenvalue [80],
µ2, as

Diam(G)≥ 4
nµ2

.

83

Second Smallest Eigenvalue
The second smallest eigenvalue of the Laplacian is an interesting topic in the field of spec-
tral graph theory. For the remainder of this thesis, we refer to the second smallest eigen-
value of the Laplacian as µ2, also called the Fiedler value. Miroslav Fiedler [90] referred
to this eigenvalue as the algebraic connectivity of a graph G. As mentioned with regards to
connectivity, a graph G is connected if and only if µ2 > 0. Another result [91] relates the al-
gebraic connectivity with the number of vertices in a graph of degree n−1, i.e., d∗n−1 ≤ µ2,
where d∗n−1 is the number of vertices of degree n−1.

Fiedler also found relations between the algebraic connectivity and two graph parame-
ters—vertex connectivity and edge connectivity. In order to understand these two parame-
ters, we need the idea of cuts. A vertex-cut of G is a set U of vertices of G such that G−U

is disconnected, i.e., subtracting the set U (and the edges incident with these vertices) dis-
connects the graph G into components. Thus, the vertex-connectivity κ(G) of a graph G

is the cardinality of a minimum vertex-cut of G [74]. Fiedler [90] proved that if G is not
a complete graph7, then µ2 ≤ κ(G). Similarly, an edge-cut of G is a set X of edges of G

such that G−X is disconnected. Hence, the edge-connectivity η(G) is the cardinality of
a minimum edge-cut of G [74]. Once again, Fiedler [90] proved that µ2 ≤ κ(G) ≤ η(G).
We also have that µ2 = n if and only if G is a complete graph on n vertices.

In graph theory and especially in network science, analysts and attackers are often con-
cerned with cuts. In any model network, an adversary might want to know the minimum
number of edges (links) or nodes to cut before the entire network is disconnected. This is
a classic problem in graph theory, known as a type of isoperimetric problem. In spectral
geometry, the isoperimetric problem is to find a closed curve of a given length that encloses
the maximum area. In graph theory, this is equivalent to removing the smallest portion of
a graph that disconnects it [79]. In 1970, Cheeger8derived bounds for µ2 on a Riemannian
bounded curve in terms of volumes and areas. Noga Alon and Vitali Milman [92] extended
this to a graph, giving a bound for µ2 in terms of edge cuts.

Consider a graph G with vertex set V (G). We would like to split the graph into two dis-

7A complete graph of order n has
(n

2

)
edges and every two distinct vertices are adjacent.

8J. Cheeger wrote "A lower bound for the smallest eigenvalue of the Laplacian" in Problems in Analysis,
1970.

84

connected components via a cut, in this case an edge-cut. An edge-cut is defined as a
bipartitition of V (G), denoted by E(S, S̄), where S ⊂ V (G), S̄ = V (G) \ S, and S∩ S̄ = /0.
We also define the edge-cut E(S, S̄) as the edge boundary ∂S of S. The cardinality of ∂S is
the number of edges with one endpoint in S and another in S̄. This quantity is then related
with the sizes of S and S̄, yielding a ratio of the proposed cut as

hG(S) =
|E(S, S̄)|

min(|S|, |S̄|) =
|∂S|

min(|S|, |S̄|) .

If we consider this formula for hG(S), then the Laplacian matrix is a better consideration. If
using weights, it is often better to use the normalized Laplacian to account for the distribu-
tion of weights. In this alternate version denoted as h′G(S), the term volume is used instead
to measure the size of S and S̄. Let the volume of S be defined as vol(S) = ∑v∈S d(v). In an
analogous manner,

h′G(S) =
|E(S, S̄)|

min(vol(S),vol(S̄))
.

As the term in the numerator decreases, the overall cut ratio decreases. Thus, an opti-
mal edge-cut translates into removing the fewest edges. This minimum ratio is called the
Cheeger constant of a graph, i.e.,

hG = inf
S

hG(S) or h′G = min
/0⊂S⊂V (G)

h′G(S),

depending on which version of the Laplacian is used [79, 83]. Finding the minimum edge-
cut is a nontrivial problem, especially when the order gets larger. From the Cheeger con-
stant, we can formulate what is known as the Cheeger inequality.

Theorem 5.3.2. [79] Let 0 = µ1 ≤ µ2 ≤ ·· · ≤ µn be the eigenvalues of the Laplacian and
hG be the Cheeger constant of a graph G. Then

2hG ≥ µ2 ≥
h2

G
2∆(G)

, (5.1)

where ∆(G) is the maximum degree of G. If using the normalized Laplacian, then the
Cheeger inequality is given as

2h′G ≥ µ2 ≥
h′2G
2
. (5.2)

85

This remarkable result gives us an upper bound for µ2. In particular, when finding the
Cheeger constant appears difficult, it can be estimated with µ2. Control of µ2 implies
control of the Cheeger constant and hence edge-connectivity [93]. A small value for µ2

implies a small number of edges needed to disconnect the graph; a large µ2 implies many
edges are required in an edge-cut. Cvetkovíc et al. [83] provided a similar result containing
the edge boundary with the Laplacian eigenvalues:

µ2
|S||S̄|

n
≤ |∂S| ≤ µn

|S||S̄|
n

=⇒ µ2 ≤
n|∂S|
|S||S̄| ≤ µn. (5.3)

There are many other established bounds on the algebraic connectivity, but we only mention
one more that relates the diameter and maximum degree of a graph. This result is due
to Alon Nilli [94], although the notation is borrowed from [83]. If G is connected with
maximum degree ∆(G) and diameter d, then

µ2 ≤ ∆(G)−2
√

∆(G)−1+
2
√

∆(G)−1−1
bd

2c
.

Largest Eigenvalue
The largest eigenvalue of A is known as the spectral radius or index of G. Besides the other
results already mentioned, for a connected graph G that is not regular, we have davg ≤ λn ≤
∆(G), where davg this is the average degree of G, λn the spectral radius of G, and ∆(G)

maximum degree of G, respectively [81].

Spanning Trees
A subgraph H of a graph G is a spanning subgraph if it spans all vertices in G, i.e., H and
G have the same vertex set. If H is a tree9, then it is called a spanning tree. Spanning
trees have many applications in networks, from design to searching. The total number of
spanning trees in a graph G, called the complexity of G, is determined by the Laplacian
spectrum [83]. This result follows from the matrix-tree theorem.

Theorem 5.3.3. [80–83] Let G be a connected graph with Laplacian matrix L and eigen-

9A tree is a connected graph that does not contain cycles. A cycle is a closed circuit, in which vertices
may be repeated but edges may not.

86

values 0 = µ1 ≤ µ2 ≤ . . . ≤ µn. Then the number of spanning trees τ(G) of G is equal to
any cofactor of L. Symbolically,

τ(G) = det(L+
1
n2 J) =

1
n

n

∏
i=2

µi, (5.4)

where J is the all-ones matrix. The (i, j)-cofactor of a matrix M is given by
(−1)i+ jdet(M(i, j)), and M(i, j) is obtained by deleting row i and column j. It should also
be noted that the following relationship also holds:

adj(L) = τ(G) J, (5.5)

where adj(L) is the adjugate matrix of L, i.e., the transpose matrix of the cofactors. In this
theorem, loops are ignored since a tree can not contain a closed path.

Cliques and Independence Number
A clique (pronounced kleek or klik) is a complete subgraph of a graph G [74]. This can
also be thought of as a subset of the vertex set V (G) in which all the vertices are pairwise
adjacent. A coclique is a set of pairwise nonadjacent vertices in a graph G [81]. The clique

number ω(G) a graph G is the order of the largest clique in G, while the independence num-

ber α(G) is the order of the largest coclique in G. We now present some bounds on these
parameters with respect to eigenvalues of A. Finding the clique number and independence
number of a graph, along with many other graph invariants, are NP-complete10problems.
However, determining the bounds on the eigenvalues can be performed in polynomial time.

Theorem 5.3.4. [83] Let G be a graph on n vertices. Let n+ and n− denote the number of
positive and negative eigenvalues of the adjaceny matrix of G, respectively. Then

α(G)≤min{n−n+, n−n−}. (5.6)

10An NP-complete problem has a solution that can be verified in polynomial time, but there is no known
algorithm that can find a solution in polynomial time. NP stands for nondeterministic polynomial time.

87

Theorem 5.3.5. [83] If G is regular, with ordinary spectrum λ1 ≤ λ2 ≤ ·· · ≤ λn, then

α(G)≤ n
−λ1

λn−λ1
. (5.7)

The clique number ω(G) is bounded above by the spectral radius of G [85], i.e., ω(G) ≤
λn +1. Cvetkovíc et al. [83] provided a slight improvement on this bound.

Theorem 5.3.6. [83] Let m−,m0,m+ denote the number of eigenvalues of a graph G which
are less than, equal to, or greater than -1, respectively. Let s = min{m−+m0 + 1, m0 +

m+, 1+ λn}. Then ω(G) ≤ s. If s = m−+m0 + 1 and the eigenvalues greater than -1
exceed m−+m0, then ω(G)≤ s−1.

Theorem 5.3.7. [83, 95] If G is a graph with n vertices and m edges, then

ω(G)≥ 2m
2m−λ 2

n
. (5.8)

Chromatic Number
The chromatic number χ(G) of a graph is the smallest number of colors in a proper coloring
of G. By a proper coloring, we mean an assignment of colors to the vertices of G, such
that adjacent vertices are colored differently [74]. Determining the chromatic number of a
graph is another decision problem, yet it is a classic exercise in graph theory.

Theorem 5.3.8. [81, 96] Let G be a connected graph with largest eigenvalue λn. Then
χ(G)≤ λn +1, with equality if and only if G is complete or is an odd cycle.

Theorem 5.3.9. [81, 83] Let G be a graph with n vertices and at least one edge. Then

χ(G)≥ 1− λn

λ1
= 1+

λn

|λ1|
, (5.9)

with equality if G is a nontrivial complete graph.

Vladimir Nikiforov [97] provided another lower bound on the chromatic number involving
a Laplacian eigenvalue.

88

Theorem 5.3.10. [83, 97] Let G be a graph with n vertices. Then

χ(G)≥ 1+
λn

µn−λ1
. (5.10)

Number of Walks

A u− v-walk in a graph G is a sequence of vertices beginning at u and ending at v such
that consecutive vertices in the sequence are adjacent [74]. A k-walk is a walk of length k.
Determining if a graph has a k-walk is an NP-complete problem as well.

Lemma 5.3.11. [76, 83] Let G be a graph with adjacency matrix A. The number of walks
of length k in G that start at vertex i and end at vertex j is given by the (i, j) entry a(k)i j of
the matrix Ak.

A u− v-walk is closed if u = v. The number of closed walks of length k is given by [83]

n

∑
j=1

λ
k
j = λ

k
1 +λ

k
2 + · · ·+λ

k
n . (5.11)

It follows from Lemma 5.3.11 that we can relate the eigenvalues to the number of triangles
and edges in a graph. In particular, we have λ 2

1 +λ 2
2 + · · ·+λ 2

n = 2|E(G)|, since the trace of
A2 counts the number of closed walks of length two. Also, λ 3

1 +λ 3
2 + · · ·+λ 3

n = 6|T (G)|,
where T (G) is the number of triangles in a graph.

In order to count the total number of walks of length k in a graph, we must first consider the
product jT Akj, where j is the all-ones vector of length n. Since A is a real symmetric matrix,
its eigenvalues are associated with orthonormal eigenvectors. Thus, for choice of constants
ai, we can substitute for j with j = 111 = ∑i aiφi, where φi is the eigenvector corresponding
to λi. Utilizing this substitution [98], we have that the total number of walks of length k is(

∑
i

aiφ
T
i

)
Ak

(
∑

i
aiφi

)
=

(
∑

i
aiφ

T
i

)(
∑

i
aiλ

k
i φi

)
= ∑

i
a2

i λ
k
i .

Alternate approaches to the total number of walks of length k are given in [77, 83].

89

Strongly Regular Graphs
A strongly regular graph is an r-regular graph on n vertices with the parameters (n,r,e, f)

such that any two adjacent vertices have e common neighbors and any two nonadjacent
vertices have f common neighbors [83]. Examples of strongly regular graphs include the
5-cycle C5 with parameters (5,2,0,1) and the Petersen graph with parameters (10,3,0,1).
The Petersen graph is referenced below in Figure 5.5.

Figure 5.5: The Petersen Graph.

Theorem 5.3.12. [83,99] Let G be a connected r-regular graph, r > 0. Then G is strongly
regular if and only if it has exactly three distinct eigenvalues. Furthermore, if these eigen-
values are λ1 = r, λ2 = s, and λ3 = t, then

s, t =
1
2
(e− f)±

√
∆ ∆ = (e− f)2 +4(r− f).

In the reverse direction, the parameters e and f are given in terms of the eigenvalues as

e = r+ s+ t + st, f = r+ st, n =
(r− s)(r− t)

r+ st
.

The multiplicities of r,s, t are 1,k, l, respectively, where

k, l =
1
2

{
n−1∓ 2r+(n−1)(e− f)√

∆

}
.

90

Furthermore, if k = l (which only happens when ∆ is not a perfect square), then the strongly
regular graph is called a conference graph. If the graph is not a conference graph, then
∆ = (s− t)2 is a perfect square, and r,s and t are all integers.

5.4 Cayley Graphs
Cayley graphs are named in honor of British mathematician Arthur Cayley (1821-1895).
Among his many accomplishments, Cayley is best known for his work in developing mod-
ern group theory. Cayley is also credited for solidifying matrix theory and making discov-
eries in analytic geometry.

5.4.1 Definitions
We first need the idea of a Cayley set in order to define the Cayley graph that we need for
a BF.

Definition 5.4.1. [39, 41] Let Γ be a group with identity element e. Suppose C is a subset
of Γ. C is called a Cayley set if and only if whenever g ∈C, then g−1 ∈C, and e /∈C.

Definition 5.4.1 follows in the traditional manner of defining a generating set for a finite
group, but we modify it by allowing the identity e to be an element of C. This exception
allows for the presence of loops in the graph [41].

Definition 5.4.2. [41] The Cayley graph G = G(Γ,C) of Γ with respect to C is the graph
whose vertex set is Γ, with two vertices g and h adjacent if gh−1 ∈C.

We now proceed to associate the Cayley graph to a BF, f : Fn
2 → F2. Recall that Fn

2 is a
vector space, and for any vector www∈ Fn

2, www =www−1 with respect to the XOR operation. Since
every vector is equal to its inverse in this group, any subset of Fn

2 is a Cayley set. The subset
we choose is the support of f , i.e., Ω f = {xxx ∈ Fn

2 : f (xxx) = 1}. We can now define a Cayley
graph for a BF.

Definition 5.4.3. [39,41] Let f be a BF on Fn
2. Define the Cayley graph of f with respect

to the set Ω f as the graph Γ f = (Fn
2, E f). The vertex set of Γ f is Fn

2, while the edge set is

91

defined by

E f = {(www,uuu) ∈ Fn
2×Fn

2 : www⊕uuu ∈Ω f }
= {(www,uuu) ∈ Fn

2×Fn
2 : f (www⊕uuu) = 1}.

It follows from Definition 5.4.3 that the adjacency matrix A f of Γ f is the array of entries
ai j = f (bbb(i)⊕bbb(j)), where bbb(i) = αi is the binary representation of the vector. The adja-
cency matrix A f has the following properties [39, 41]:

i) The row sums of A f are equal to |Ω f |;
ii) Property i) implies that Γ f is a regular graph of degree wt(f) = |Ω f |;

iii) A f has the dyadic property [100]: ai j = ai+2n−1, j+2n−1 , 0≤ i, j ≤ 2n−1;
iv) A f is an 2n×2n symmetric matrix.

5.4.2 Boolean Cayley Graphs and their Spectra
For clarity, we now refer to Definition 5.4.3 as the one for Boolean Cayley graphs. BFs
and their Walsh spectra have been analyzed extensively in the last 50 years, especially with
regards to their associated cryptographic properties. The Cayley graph has also received
much attention in the works of Laszlo Babai [101] and László Lovász [102], in particular
with regards to its graph spectra. With the arrival of the Boolean Cayley graph, however,
we now have a means to examine the graph spectra of a BF. The seminal work on Boolean
Cayley graphs and their spectra was performed by Bernasconi and Codenotti [41], a sum-
mary of which is presented here.

Theorem 5.4.4. Let f : Fn
2→ F2, and let λi, 0≤ i≤ 2n−1, be the eigenvalues of the asso-

ciated Cayley graph Γ f . Then, there is a one-to-one correspondence between the spectrum
of Γ f and the Walsh spectrum of f , i.e., λi = F(bbb(i)), for any i.

Proof: Recall that we defined the group character of Fn
2 as the function Qwww(xxx)= (−1)<www·xxx>.

The eigenvectors of Γ f are equal to the characters Qwww(xxx). Then, the ith eigenvalue of A f ,

92

corresponding to the eigenvector Qbbb(i) is given by

λi = ∑
x

Qwww(xxx) f (xxx) = ∑
x
(−1)<www·xxx> f (xxx)

= ∑
x
(−1)<bbb(i)·xxx> f (xxx) = F(bbb(i)).

EXAMPLE 5.4.5. Let us use the function from Example 4.5.4, f : F2
2 → F2 with ANF

given by 1⊕ x1⊕ x2.

F(www) =W (f)(www) = ∑
xxx∈F2

2

f (xxx) · (−1)<www·xxx>

F(00) = 1(−1)0 +0+0+1(−1)0 = 2

F(01) = 1(−1)0 +0+0+1(−1)1 = 0

F(10) = 1(−1)0 +0+0+1(−1)1 = 0

F(11) = 1(−1)0 +0+0+1(−1)2 = 2

λ0 = F(00) = 2

λ1 = F(01) = 0

λ2 = F(10) = 0

λ3 = F(11) = 2

We must be careful here not to confuse the subscript notation of the Cayley graph eigenval-
ues with the ordinary spectrum presented in Subsection 5.3.1. Translating the eigenvalues
of this function to the spectrum notation of an adjacency matrix, we have

Spec Γ f =

(
0 2
2 2

)
.

Theorem 5.4.4 is a remarkable result not only because it links BFs to spectral graph the-
ory, but it can save computational time. There are numerous computer programs that can

93

quickly compute the WT of a BF. In order to compute the eigenvalues of A f , however,
we must first collect all of the vector combinations in the support of f and then create the
2n× 2n matrix. For large n, this can be time consuming. For this thesis, in particular for
Chapter 6, Theorem 5.4.4 only holds if we assign a weight of one to a loop in a pseudo-
graph. If a loop is assigned a weight of two, then we do not see a one-to-one correspondence
between the WT and the Cayley spectra.

Figure 5.6 depicts the Cayley graph from Example 5.4.5. Using some of the results from
Section 5.3.1, we can make some comments about this graph. We know that the Cayley
graph is regular, and using the adjacency matrix for this function, the row sums of A f are
two. Thus, Γ f is 2-regular. Regularity also implies that r = 2 is an eigenvalue of Γ f , and
all other eigenvalues have absolute value less than or equal to 2. We can clearly see that the
graph in Figure 5.6 is disconnected. This is verified because the largest eigenvalue λ3 = 2
does not have multiplicity one. Also, the Laplacian eigenvalues (which in this case happen
to be the same as the adjacency matrix) tell us that Γ f is disconnected since the multiplicity
of 0 implies that the graph has k(G) = 2 components. With regards to diameter, we do
not define the diameter of a disconnected graph. However, the diameter of a component is
possible to examine and since the components of the graph in Figure 5.6 are the same, we
deduce that the diameter of a component is 1. This is verified with the eigenvalues of an
adjacency matrix for one component, which are 0 and 2. The diameter is bounded above
by d− 1, where d = 2 for the number of distinct eigenvalues. In this case, we know that
diam(G) ≤ 2− 1 = 1. It is not very helpful to examine Γ f with some of the other results
since the graph is disconnected, but this will be looked at closer in Chapter 6.

94

Figure 5.6: Cayley Graph Γ f for the Function 1⊕ x1⊕ x2.

Let 〈Ω f 〉 ⊆ Fn
2 be the space of the (0,1) sequences generated by Ω f and let dim〈Ω f 〉 be

its dimension [39, 41]. Given this, observe that Ω f = {00,11} in Example 5.4.5. Since
the zero vector is not part of a basis, this space has dimension one, i.e., dim〈Ω f 〉 = 1.
With this new concept, we can state some more results on Boolean Cayley spectra, taken
from [39, 41].

5.4.3 Further Spectral Properties of Boolean Cayley Graphs
This section lists some other properties relating the Cayley spectra to graph properties as
well as BF properties. For some of these results, it is assumed that n ≥ 4, and these are
marked with a (∗).

i*) The multiplicity of the largest spectral coefficient of f , F(bbb(0)), is equal to
2n−dim〈Ω f 〉.

ii) If dim〈Ω f 〉= n, then Γ f is connected.
iii*) If Γ f is connected, then f has a spectral coefficient equal to -wt(f) if and only if its

Walsh spectrum is symmetric with respect to zero.
iv*) Γ f is bipartite if and only if the Walsh spectrum of f is symmetric with respect

to zero. Furthermore, Γ f is bipartite if and only if Fn
2\Ω f contains a subspace of

dimension n−1.
v*) The number of nonzero spectral coefficients is equal to rank(A f).

95

vi*) If Γ f has two distinct eigenvalues, then its connected components are complete
graphs and Ω f ∪{bbb(0)} is a group.

vii*) If Γ f has three distinct eigenvalues none of which is zero, then these eigenvalues are

λ0 = |Ω f |= wt(f), λ2 =−λ1 =
√
|Ω f |− e,

where e is the parameter of a strongly regular graph.
viii*) A BF defined on Fn

2 (n even) is bent if and only if its associated Cayley graph Γ f is a
strongly regular graph with the additional property that e = f .

ix) Assume n > 4. If Γ f is triangle free, then f is not bent.
x*) If Γ f is the Cayley graph of f with eigenvalues λ1 ≤ λ2 ≤ ·· · ≤ λv and g being the

multiplicity of λ1, then

min
{

g+1,1− λ1

λv−1

}
≤ χ(Γ f)≤ |Ω f |,

provided λv−1 6= 0.
xi*) A BF is correlation immune of order ` if and only if the eigenvalues of its associated

Cayley graph satisfy λi = 0 for all i with 1 ≤ wt(bbb(i)) ≤ `. Resiliency follows if
λ0 = 2n−1.

96

CHAPTER 6:
DES Spectra

In this chapter, the S-Boxes of DES are examined in several ways. First, we find the BF
representation for each of the coordinate functions within an S-Box. The relevant cryp-
tographic properties of these functions are then computed and compared to each other.
Second, we associate the BFs to a Cayley graph and examine the spectra of these graphs.
With the spectra and cryptographic properties of the functions on hand, we can deduce
some properties of the Cayley graph.

6.1 Methods
Recall from Chapter 4 that an S-Box is a function f : Fm

2 → Fn
2. For DES, this function

is F : F6
2 → F4

2. Each of the boxes contains four coordinate BFs, represented as F(xxx) =

(f1(xxx), f2(xxx), f3(xxx), f4(xxx)), where each fi is a mapping from the vector space F6
2 to the

binary field F2, i.e., fi : F6
2→ F2. As an example of our approach, reconsider S-Box 1 from

Table 3.10, displayed for the reader below.

S-Box 1
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 1110 0100 1101 0001 0010 1111 1011 1000
01 0000 1111 0111 0100 1110 0010 1101 0001
10 0100 0001 1110 1000 1101 0110 0010 1011
11 1111 1100 1000 0010 0100 0100 0001 0111

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 0011 1010 0110 1100 0101 1001 0000 0111
01 1010 0110 1100 1011 1001 0101 0011 1000
10 1111 1100 1001 0111 0011 1010 0101 0000
11 0101 1011 0011 1110 1010 0000 0110 1101

Since each coordinate function has a total of 26 input vectors, the S-Box entries represent

97

the 64 output bits to these functions. Thus, as a truth table function, f1 has the following se-
quence of outputs: (1,1,1,0,0,1,0,0,1,1,0,1,0,0,0,1,0,0,1,0,1,1,1,1,1,0,1,1,1,0,0,
0,0,0,1,1,1,0,1,0,0,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,0,1,1,1), corresponding to
the entries of the first (00) row in S-Box 1.

The ordering of input variables we choose is in reverse order, i.e., f (x6,x5,x4,x3,x2,x1).
Again, the ordering of the variables is unimportant. Table 6.1 depicts the first 10 entries of
the truth table for f1 as an explanation of the variable ordering.

x6 x5 x4 x3 x2 x1 f

0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0
0 0 0 1 0 0 0
0 0 0 1 0 1 1
0 0 0 1 1 0 0
0 0 0 1 1 1 0
0 0 1 0 0 0 1
0 0 1 0 0 1 1

Table 6.1: First 10 Truth Table Entries for S-Box 1.

The unique truth table output is then input into a software program to compute the various
cryptographic properties of the BFs. For this thesis, multiple programs are used for analysis
in order to verify accuracy, and these include SageMathCloud™, R© and R-Studio©, as
well as Boolean Functions Workshop 1.3©. The adjacency matrix A f is then formed from
the definitions in Chapter 5. Note that for any vector www in F6

2, www⊕www= 000 over the binary field
F2. Thus, since an edge (www,uuu) is present in the associated Cayley graph if f (www⊕uuu) = 1,
then f (www⊕www) = 1 implies the presence of a loop. Hence, if the first output in a function’s
truth table sequence is a one, then the associated Cayley graph has a loop at every vertex.

The adjacency matrix is then input into MATLAB®, where the eigenvalues are computed

98

and compared to the corresponding function’s WT for verification. The adjacency matrix
is also imported into MATLAB® and Gephi© to produce a graph.

6.2 DES S-Box Spectra
This section details the results obtained via the methods in Section 6.1. Each S-Box is
given its own subsection for reader clarity. Recall that the notation we adopt for spectra is
given by Definition 5.3.1.

6.2.1 S-Box 1
The ANFs for the coordinate functions are displayed in Table 6.2.

Function ANF Number of Terms Degree
f1 1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x4 ⊕

x2x5 ⊕ x4x5 ⊕ x2x6 ⊕ x5x6 ⊕ x1x3x4 ⊕
x2x3x4 ⊕ x1x3x5 ⊕ x2x3x5 ⊕ x1x4x5 ⊕
x3x4x5⊕x1x2x6⊕x2x3x6⊕x1x4x6⊕x2x4x6⊕
x1x5x6 ⊕ x4x5x6 ⊕ x1x2x3x5 ⊕ x1x3x4x5 ⊕
x2x3x4x5⊕x1x3x4x6⊕x2x3x5x6⊕x1x4x5x6⊕
x1x2x3x4x5⊕ x1x2x3x5x6

31 5

f2 x3 + x5 + x6 + x1x4 + x2x4 + x3x4 + x1x6 +

x5x6 + x1x2x4 + x2x3x4 + x1x2x5 + x2x3x5 +

x1x4x5+x3x4x5+x2x3x6+x2x5x6+x4x5x6+

x1x2x4x5+x2x3x4x5+x1x2x4x6+x1x3x4x6+

x2x3x4x6+x1x2x5x6+x2x3x5x6+x1x4x5x6+

x2x4x5x6 + x1x2x3x4x6 + x1x2x4x5x6

28 5

f3 x1 + x4 + x5 + x6 + x1x2 + x1x3 + x1x4 +

x1x5 + x2x5 + x3x5 + x1x6 + x4x6 + x2x3x4 +

x1x4x5+x1x2x6+x1x3x6+x2x3x6+x2x4x6+

x3x4x6 + x1x5x6 + x1x2x3x5 + x1x3x5x6 +

x1x4x5x6 + x1x2x3x4x5 + x1x2x3x4x6 +

x1x2x3x5x6

26 5

f4 1 + x5 + x6 + x2x3 + x1x4 + x2x4 + x3x4 +

x1x5+x3x5+x1x6+x3x6+x1x2x4+x1x3x4+

x2x3x4+x1x2x5+x2x4x5+x2x3x6+x3x4x6+

x1x5x6 + x3x5x6 + x4x5x6 + x1x2x3x5 +

x1x2x4x5+x2x3x4x5+x1x2x3x6+x1x2x4x6+

x1x3x4x6+x1x2x5x6+x1x3x5x6+x1x4x5x6+

x2x4x5x6 + x1x2x3x4x5 + x1x2x4x5x6

33 5

Table 6.2: ANF and Degree of S-Box 1 BFs.

99

Tables 6.3, 6.4, 6.5, and 6.6 display the various spectra for these same functions as well as
their relevant cryptographic criteria.

Function Walsh Spectra and Walsh-Hadamard Spectra
f1 W: (32,0,0,0,0,0,−4,−4,2,2,−2,−2,−2,−2,−2,−2,0,0,4,−4,8,0,0,0,−2,6,−2,−2,2,2,−2,6,2,2,2,2,

6,6,2,2,0,0,4,−12,−8,8,0,0−2,−10,2,2,2,2,10,2,0,0,8,0,8,0,−4,−4)

WH: (0,0,0,0,0,0,8,8,−4,−4,4,4,4,4,4,4,0,0,−8,8,−16,0,0,0,4,−12,4,4,−4,−4,4,−12,−4,−4,−4,−4,

−12,−12,−4,−4,0,0,−8,24,16,−16,0,0,4,20,−4,−4,−4,−4,−20,−4,0,0,−16,0,−16,0,8,8)

f2 W: (32,0,0,0,2,2,2,2,0,4,0,−4,−6,6,2,6,2,2,2,−6,−8,0,0,0,−2,2,−2,2,−4,0,−4,0,0,−4,0,

−4,2,−2,2,−2,0,8,0,0,−6,−6,2,−6,−2,−6,−2,2,−4,0,−12,0,2,−6,2,10,−8,0,8,0)

WH: (0,0,0,0,−4,−4,−4,−4,0,−8,0,8,12,−12,−4,−12,−4,−4,−4,12,16,0,0,0,4,−4,4,−4,8,0,8,0,0,8,0,

8,−4,4,−4,4,0,−16,0,0,12,12,−4,12,4,12,4,−4,8,0,24,0,−4,12,−4,−20,16,0,−16,0)

f3 W: (32,0,0,0,4,−4,0,0,2,−2,2,−2,2,−2,−2,2,2,−2,6,2,2,6,2,−2,−4,−4,0,0,0,0,0,−8,−2,2,2,−2,

−2,2,6,−6,−4,−12,0,0,0,0,8,8,−8,0,0,0,4,−4,0,−8,−2,2,−10,2,−10,2,2,−2)

WH: (0,0,0,0,−8,8,0,0,−4,4,−4,4,−4,4,4,−4,−4,4,−12,−4,−4,−12,−4,4,8,8,0,0,0,0,0,16,4,−4,−4,4,

4,−4,−12,12,8,24,0,0,0,0,−16,−16,16,0,0,0,−8,8,0,16,4,−4,20,−4,20,−4,−4,4)

f4 W: (32,0,0,0,−2,−2,−2,−2,0,0,4,4,6,−2,2,−6,4,4,0,0,2,−6,−2,6,8,−8,0,0,−2,−2,−2,−2,−2,−2,2,

2,0,0,4,4,6,−2,6,−2,0,0,−8,−8,−2,6,6,−2,8,8,0,0,2,2,−2,−2,4,4,−8,8)

WH: (0,0,0,0,4,4,4,4,0,0,−8,−8,−12,4,−4,12,−8,−8,0,0,−4,12,4,−12,−16,16,0,0,4,4,4,4,4,4,−4,

−4,0,0,−8,−8,−12,4,−12,4,0,0,16,16,4,−12,−12,4,−16,−16,0,0,−4,−4,4,4,−8,−8,16,−16)

Table 6.3: Walsh Spectra and Walsh-Hadamard Spectra of S-Box 1 BFs.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−12 −10 −8 −4 −2 0 2 4 6 8 10 32

1 1 1 5 11 18 15 2 4 4 1 1

)
12

f2

(
−12 −8 −6 −4 −2 0 2 4 6 8 10 32

1 2 7 6 6 19 16 1 2 2 1 1

)
12

f3

(
−12 −10 −8 −6 −4 −2 0 2 4 6 8 32

1 2 3 1 5 11 18 15 2 3 2 1

)
12

f4

(
−8 −6 −2 0 2 4 6 8 32

4 2 18 15 6 8 6 4 1

)
9

Table 6.4: Cayley Graph Spectra of S-Box 1 BFs.

100

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 26 28 30 32 34 36 40 42 44

1 1 4 4 2 15 18 11 5 1 1 1

)

f2

(
0 22 24 26 28 30 32 34 36 38 40 44

1 1 2 2 1 16 19 6 6 7 2 1

)

f3

(
0 24 26 28 30 32 34 36 38 40 42 44

1 2 3 2 15 18 11 5 1 3 2 1

)

f4

(
0 24 26 28 30 32 34 38 40

1 4 6 8 6 15 18 2 4

)

Table 6.5: Laplacian Spectra of Cayley Graphs Associated with S-Box 1 BFs.

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 20 20 20 24

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.6: Cryptographic Properties of S-Box 1 BFs.

Figure 6.1 represents the Cayley graph for the first row BF. Due to software limitations,
loops are not present.

101

1

2

3

6

9

10

12

16

19

21

22

23

24

25

27

28

29

35

36

37

39

42

43

45

46

50

52

53

56

62

63

64

4

5

11

15

20

26

30

38

40

41

44

49

51

54

55

61

8

14

17

31

33

34

47

48

7

13

18

32

58

59

60

57

Figure 6.1: Cayley Graph Representation for f1 of S-Box 1, Loops Not Present.

Spectral Observations
Here we state some observations from the Cayley graphs of S-Box 1 with the relations
given in Chapter 5.

Regularity: The Cayley graphs associated with all of the 32 BFs are regular of degree
wt(f) = |Ω f |= 32.

Connectivity: This is apparent from the first graph in Figure 6.1, but all graphs Γ f are

102

connected since the multiplicity of λn = 32 is 1 (also µ2 > 0 and dim〈Ω f 〉 = 6).
Additionally, since m(µ1) = 1, then Γ f has one component. Since none of the Walsh
spectra are symmetric with respect to zero, we do not see any Cayley spectra where
λi =−32.

Bipartite: None of the graphs are bipartite since the Walsh spectra is not symmetric with
respect to 0.

Rank: The ranks of the adjacency matrices A fi are equal to 46, 45, 46, and 49, respectively.
Diameter: The diameters of the Cayley graphs associated with S-Box 1 are bounded ac-

cording to the following inequalities:

f1 :
4

64 ·22
= 0.0028≤ Diam(Γ f)≤ 12−1 = 11;

f2 :
4

64 ·22
= 0.0028≤ Diam(Γ f)≤ 12−1 = 11;

f3 :
4

64 ·24
= 0.0026≤ Diam(Γ f)≤ 12−1 = 11;

f4 :
4

64 ·24
= 0.0026≤ Diam(Γ f)≤ 9−1 = 8.

Using SageMathCloud™, we determine the diameter to be 2 for all four of the Cayley
graphs.11

Edge Connectivity: Since µ2 is 22 or 24, we have an idea for the number of edges needed
in an edge-cut of the Cayley graphs.

Spanning Trees: The Cayley graphs for these functions have large complexities. Chap-
ter 5 provided a formula for the number of spanning trees in a graph in terms of the
nonzero Laplacian eigenvalues. It is also known that for r-regular graphs of order n,
the complexity of the graph G is bounded above [76] by

τ(G)≤ 1
n

(
nr

n−1

)n−1

.

The number of spanning trees in these graphs are approximately 2.277×1092,1.731×
1093,1.7648×1093, and 2.2708×1092. These complexities achieve close to the up-
per bound of 2.8129× 1093, but interestingly Γ f4 has the smallest complexity and

11For many of these graph properties, we consider only the underlying simple graph for those pseudo-
graphs with loops, since many graph parameters are only defined on simple graphs.

103

also the smallest number of distinct eigenvalues (and consequently a tighter upper
bound on diameter).

Clique and Independence Number: We have bounds for the clique number based off the
details in Chapter 5, and these are universal for all of the S-Boxes since they are in
terms of the spectral radius. Thus, we have 2 ≤ ω(Γ f) ≤ 33 for the entire set of
S-Boxes. This bound is not ideal, since we would like a tighter interval. Methods
are available, however, for computing the clique number of a graph with the aid of
NetworkX© and Python™. Using SageMathCloud™, we compute the clique number
to be 8 for all four graphs, i.e., ω(Γ f) = 8. For the independence number, we have
an upper bound based on the inequality in Chapter 5 for regular graphs. Hence,
α(Γ f) is bounded above by 17.4545, 17.4545, 17.4545, and 12.8, respectively. Using
the Independent Set Algorithm© by Dharwadker [103], however, the independence
number is found to be α(Γ f) = 8 for the S-Box 1 Cayley graphs.

Chromatic Number: The bounds for χ(G) given in Chapter 5 give us that 3.6≤ χ(Γ f)≤
32. We can increase the lower bound slightly since it is known that n

α
≤ χ . Hence,

8 ≤ χ(Γ f) ≤ 32. Using SageMathCloud™, we compute the chromatic number also
to be 8 for all four graphs.

6.2.2 S-Box 2
In this subsection, we mimic the approach taken in Subsection 6.2.1, with less explanation.
S-Box 2 is displayed in Table 6.7.

S-Box 2
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 1111 0001 1000 1110 0110 1011 0011 0100
01 0011 1101 0100 0111 1111 0010 1000 1110
10 0000 1110 0111 1011 1010 0100 1101 0001
11 1101 1000 1010 0001 0011 1111 0100 0010

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 1001 0111 0010 1101 1100 0000 0101 1010
01 1100 0000 0001 1010 0110 1001 1011 0101
10 0101 1000 1100 0110 1001 0011 0010 1111
11 1011 0110 0111 1100 0000 0101 1110 1001

Table 6.7: S-Box 2 in Binary Form.

104

The BFs in S-Box 2 are converted to their ANFs in Table 6.8. Tables 6.9, 6.10, 6.11, and
6.12 follow in the same manner as before.

Function ANF Number of Terms Degree
f1 1 ⊕ x3 ⊕ x5 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x5 ⊕

x2x5⊕ x1x6⊕ x2x6⊕ x4x6⊕ x5x6⊕ x1x2x3⊕
x1x2x4⊕x1x3x4⊕x2x3x4⊕x2x3x5⊕x2x4x5⊕
x2x4x6 ⊕ x3x4x6 ⊕ x2x5x6 ⊕ x1x2x3x4 ⊕
x1x2x4x5⊕x2x3x4x5⊕x1x3x4x6⊕x2x3x4x6⊕
x1x2x3x4x5⊕ x1x2x3x5x6

28 5

f2 x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕
x2x5 ⊕ x4x6 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x2x3x4 ⊕
x2x3x5⊕x2x3x6⊕x1x4x6⊕x3x4x6⊕x1x5x6⊕
x2x5x6 ⊕ x1x2x3x4 ⊕ x1x3x4x5 ⊕ x2x3x4x5 ⊕
x1x2x3x6⊕ x1x3x4x6

23 4

f3 x3 ⊕ x5 ⊕ x1x4 ⊕ x2x4 ⊕ x1x5 ⊕ x1x6 ⊕
x4x6 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x2x3x4 ⊕ x2x3x6 ⊕
x1x5x6 ⊕ x2x5x6 ⊕ x1x2x3x4 ⊕ x1x2x4x6 ⊕
x1x3x4x6⊕x1x3x5x6⊕x2x3x5x6⊕x2x4x5x6⊕
x1x2x3x5x6⊕ x1x2x4x5x6

21 5

f4 1 ⊕ x2 ⊕ x5 ⊕ x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x4 ⊕
x3x4 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕ x3x6 ⊕ x4x6 ⊕
x1x2x4 ⊕ x1x2x5 ⊕ x1x3x5 ⊕ x2x3x5 ⊕
x1x3x6 ⊕ x2x3x6 ⊕ x1x4x6 ⊕ x3x4x6 ⊕
x1x5x6 ⊕ x1x2x3x4 ⊕ x1x3x4x5 ⊕ x1x2x3x6 ⊕
x1x2x4x6⊕x1x3x4x6⊕x2x3x4x6⊕x2x4x5x6⊕
x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕ x1x2x3x5x6 ⊕
x1x2x4x5x6

33 5

Table 6.8: ANF and Degree of S-Box 2 BFs.

105

Function Walsh Spectra and Walsh-Hadamard Spectra
f1 W: (32,0,0,0,0,0,0,0,2,−2,−2,2,6,2,10,−2,4,0,0,4,−4,8,0,4,2,−6,−6,2,6,−2,−2,6,

2,2,−2,−2,2,2,−2,−2,4,0,−4,0,0,−4,0,−12,−2,2,6,2,6,−6,6,2,−4,−4,0,0,8,8,−4,−4)

WH: (0,0,0,0,0,0,0,0,−4,4,4,−4,−12,−4,−20,4,−8,0,0,−8,8,−16,0,−8,−4,12,12,−4,−12,4,4,−12,

−4,−4,4,4,−4,−4,4,4,−8,0,8,0,0,8,0,24,4,−4,−12,−4,−12,12,−12,−4,8,8,0,0,−16,−16,8,8)

f2 W: (32,0,0,0,0,0,0,0,0,0,0,0,8,0,0,−8,−4,−4,0,0,−4,−4,0,0,0,0,4,4,0,8,−4,4,4,0,0,−4,−4,0,0,4,

4,0,−8,4,4,0,−8,4,4,−8,−4,0,−4,8,−4,−8,0,4,0,4,−8,−4,−8,−4)

WH: (0,0,0,0,0,0,0,0,0,0,0,0,−16,0,0,16,8,8,0,0,8,8,0,0,0,0,−8,−8,0,−16,8,−8,−8,0,0,8,8,0,0,−8,

−8,0,16,−8,−8,0,16,−8,−8,16,8,0,8,−16,8,16,0,−8,0,−8,16,8,16,8)

f3 W: (32,0,0,0,−2,−2,2,2,−6,2,2,2,0,0,−4,4,0,0,4,−4,−2,−10,−2,−2,−2,−2,2,2,−4,−4,−4,−4,0,0,0,0,

2,2,−2,−2,−2,6,6,−10,−8,8,−4,4,4,4,−8,0,−10,−2,−2,−2,−2,−2,2,2,0,0,8,8)

WH: (0,0,0,0,4,4,−4,−4,12,−4,−4,−4,0,0,8,−8,0,0,−8,8,4,20,4,4,4,4,−4,−4,8,8,8,8,0,0,0,0,

−4,−4,4,4,4,−12,−12,20,16,−16,8,−8,−8,−8,16,0,20,4,4,4,4,4,−4,−4,0,0,−16,−16)

f4 W: (32,0,0,0,2,2,−2,−2,2,−2,−2,2,−4,0,−4,8,2,2,2,2,8,0,−4,4,0,4,4,0,6,−6,6,

2,−2,2,−2,2,0,−4,4,0,8,0,4,4,2,−6,−6,−6,−4,0,4,8,2,6,6,−6,−6,−6,6,−2,0,−8,0,0)

WH: (0,0,0,0,−4,−4,4,4,−4,4,4,−4,8,0,8,−16,−4,−4,−4,−4,−16,0,8,−8,0,−8,−8,0,−12,12,−12,

−4,4,−4,4,−4,0,8,−8,0,−16,0,−8,−8,−4,12,12,12,8,0,−8,−16,−4,−12,−12,12,12,12,−12,4,0,16,0,0)

Table 6.9: Walsh Spectra and Walsh-Hadamard Spectra of S-Box 2 BFs.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−12 −6 −4 −2 0 2 4 6 8 10 32

1 3 7 10 16 12 4 6 3 1 1

)
11

f2

(
−8 −4 0 4 8 32

7 12 29 12 3 1

)
6

f3

(
−10 −8 −6 −4 −2 0 2 4 6 8 32

3 2 1 7 15 14 11 5 2 3 1

)
11

f4

(
−8 −6 −4 −2 0 2 4 6 8 32

1 7 5 7 14 13 7 5 4 1

)
10

Table 6.10: Cayley Graph Spectra of S-Box 2 BFs.

106

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 26 28 30 32 34 36 38 44

1 1 3 6 4 12 16 10 7 3 1

)

f2

(
0 24 28 32 36 40

1 3 12 29 12 7

)

f3

(
0 24 26 28 30 32 34 36 38 40 42

1 2 3 5 11 14 15 7 1 2 3

)

f4

(
0 24 26 28 30 32 34 36 38 40

1 4 5 7 13 14 7 5 7 1

)

Table 6.11: Laplacian Spectra of Cayley Graphs Associated with S-Box 2 BFs.

Crypto Property f1 f2 f3 f4

Degree 5 4 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 20 24 22 24

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.12: Cryptographic Properties of S-Box 2 BFs.

Figure 6.2 represents the Cayley graph for the second row BF. Since all of these Cayley
graphs are 32-regular, we omit the remaining graphical representations from this thesis.

107

v1

v5 v6

v7

v8

v10

v11

v12

v14

v17

v18

v19

v23

v25

v26

v28

v32

v33

v35 v38

v39

v41

v42

v45

v47

v48 v49

v52 v54

v56

v59

v60

v61

v2

v9

v13v20

v24

v27

v31

v34

v36 v37

v40

v46

v50

v51

v53

v55

v62

v3

v16

v21

v30

v43
v44

v57

v58

v63

v4

v15

v22

v29

v64

Figure 6.2: Cayley Graph Representation for f2 of S-Box 1.

108

Spectral Observations
We deviate here for the second S-Box and present the results in table format without bounds
where appropriate.

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 48 35 50 50

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 2.2642×1092 1.7368×1093 1.8851×1093 2.2737×1092

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.13: Properties of Cayley Graphs Associated with S-Box 2 BFs.

6.2.3 S-Box 3
S-Box 3 is displayed in Table 6.14.

S-Box 3
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 1010 0000 1001 1110 0110 0011 1111 0101
01 1101 0111 0000 1001 0011 0100 0110 1010
10 1101 0110 0100 1001 1000 1111 0011 0000
11 0001 1010 1101 0000 0110 1001 1000 0111

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 0001 1101 1100 0111 1011 0100 0010 1000
01 0010 1000 0101 1110 1100 1011 1111 0001
10 1011 0001 0010 1100 0101 1010 1110 0111
11 0100 1111 1110 0011 1011 0101 0010 1100

Table 6.14: S-Box 3 in Binary Form.

109

The BFs in S-Box 3 are converted to their ANFs in Table 6.15. Tables 6.16, 6.17, 6.18, and
6.19 follow in the same manner as before.

Function ANF Number of Terms Degree
f1 1 ⊕ x1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x1x3 ⊕ x2x4 ⊕

x3x4 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x6 ⊕ x4x6 ⊕
x2x3x4⊕x1x4x5⊕x1x2x6⊕x1x3x6⊕x2x3x6⊕
x3x4x6⊕x1x5x6⊕x2x5x6⊕x3x5x6⊕x4x5x6⊕
x1x2x3x4⊕x2x3x4x5⊕x1x2x4x6⊕x1x3x4x6⊕
x2x3x5x6⊕ x1x2x3x4x5⊕ x1x2x4x5x6

30 5

f2 1⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x1x3 ⊕
x2x4⊕x3x5⊕x4x5⊕x4x6⊕x1x2x4⊕x2x3x4⊕
x1x2x5⊕x2x3x5⊕x1x4x5⊕x2x4x5⊕x3x4x5⊕
x1x4x6 ⊕ x4x5x6 ⊕ x1x2x3x5 ⊕ x1x2x4x5 ⊕
x1x3x4x5⊕x2x3x4x5⊕x2x3x4x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x3x4x6

29 5

f3 1⊕x2⊕x3⊕x4⊕x1x2⊕x1x3⊕x1x4⊕x2x4⊕
x1x5⊕ x3x5⊕ x1x6⊕ x2x6⊕ x5x6⊕ x1x2x3⊕
x1x3x4⊕x2x3x4⊕x2x3x5⊕x2x4x5⊕x1x5x6⊕
x3x5x6 ⊕ x1x2x4x5 ⊕ x2x3x4x5 ⊕ x1x2x3x6 ⊕
x2x3x4x6⊕x1x2x5x6⊕x1x3x5x6⊕x2x3x5x6⊕
x1x2x3x4x5⊕ x1x2x3x4x6

29 5

f4 x3⊕ x4⊕ x1x2⊕ x1x3⊕ x2x4⊕ x1x5⊕ x2x5⊕
x1x6 ⊕ x5x6 ⊕ x1x2x3 ⊕ x1x3x4 ⊕ x2x3x4 ⊕
x1x2x5 ⊕ x1x3x5 ⊕ x2x4x5 ⊕ x1x4x6 ⊕
x2x4x6 ⊕ x1x5x6 ⊕ x2x5x6 ⊕ x1x2x3x5 ⊕
x1x2x4x5⊕x1x3x4x5⊕x2x3x4x5⊕x1x2x5x6⊕
x1x2x3x5x6⊕ x1x2x4x5x6

26 5

Table 6.15: ANF and Degree of S-Box 3 BFs.

110

Function Walsh Spectra and Walsh-Hadamard Spectra
f1 W: (32,0,0,0,2,6,−2,2,−4,0,−4,0,2,2,−2,−2,0,0,4,4,−6,−2,2,6,−4,0,0,4,2,2,−6,−6,

2,2,−2,−2,4,0,4,0,−6,6,−2,−6,0,0,8,−8,−6,10,2,2,4,0,−8,4,2,−2,2,−2,8,8,4,4)

WH: (0,0,0,0,−4,−12,4,−4,8,0,8,0,−4,−4,4,4,0,0,−8,−8,12,4,−4,−12,8,0,0,−8,−4,−4,12,12,

−4,−4,4,4,−8,0,−8,0,12,−12,4,12,0,0,−16,16,12,−20,−4,−4,−8,0,16,−8,−4,4,−4,4,−16,−16,−8,−8)

f2 W: (32,0,0,0,0,−4,0,−4,0,0,0,0,0,4,0,4,−2,−2,2,2,−6,−2,−2,2,2,2,−2,−2,6,2,2,−2,−2,−2,−2,

−2,−2,2,−2,2,6,−10,−2,−2,6,2,−2,10,4,−4,0,8,0,4,12,0,8,0,4,−4,−4,−8,8,4)

WH: (0,0,0,0,0,8,0,8,0,0,0,0,0,−8,0,−8,4,4,−4,−4,12,4,4,−4,−4,−4,4,4,−12,−4,−4,4,4,4,4,

4,4,−4,4,−4,−12,20,4,4,−12,−4,4,−20,−8,8,0,−16,0,−8,−24,0,−16,0,−8,8,8,16,−16,−8)

f3 W: (32,0,0,0,0,0,0,0,4,0,0,4,0,−4,4,8,−2,−2,2,2,2,2,−2,−2,2,−2,−6,−2,10,6,2,6,

−2,−2,2,2,−2,−2,2,2,6,2,6,−6,−6,6,2,6,4,−4,4,−4,0,−8,8,0,−4,0,0,−4,4,−8,−8,4)

WH: (0,0,0,0,0,0,0,0,−8,0,0,−8,0,8,−8,−16,4,4,−4,−4,−4,−4,4,4,−4,4,12,4,−20,−12,−4,−12,

4,4,−4,−4,4,4,−4,−4,−12,−4,−12,12,12,−12,−4,−12,−8,8,−8,8,0,16,−16,0,8,0,0,8,−8,16,16,−8)

f4 W: (32,0,0,0,−2,2,2,−2,2,−2,−2,2,−4,−4,−4,−4,0,0,0,0,2,−10,6,2,−2,2,2,−2,−12,−4,−4,4,−4,0,0,

4,2,−6,2,2,−2,6,−2,−2,0,−4,−4,−8,−4,0,0,4,6,−2,−10,6,2,2,−6,2,0,4,4,8)

WH: (0,0,0,0,4,−4,−4,4,−4,4,4,−4,8,8,8,8,0,0,0,0,−4,20,−12,−4,4,−4,−4,4,24,8,8,−8,8,0,0,

−8,−4,12,−4,−4,4,−12,4,4,0,8,8,16,8,0,0,−8,−12,4,20,−12,−4,−4,12,−4,0,−8,−8,−16)

Table 6.16: Walsh Spectra and Walsh-Hadamard Spectra of S-Box 3 BFs.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−8 −6 −4 −2 0 2 4 6 8 10 32

2 6 3 9 14 13 9 3 3 1 1

)
11

f2

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 12 32

1 1 1 5 16 15 10 6 3 3 1 1 1

)
13

f3

(
−8 −6 −4 −2 0 2 4 6 8 10 32

3 3 5 10 14 12 7 6 2 1 1

)
11

f4

(
−12 −10 −8 −6 −4 −2 0 2 4 6 8 32

1 2 1 2 10 10 13 14 5 4 1 1

)
12

Table 6.17: Cayley Graph Spectra of S-Box 3 BFs.

111

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 26 28 30 32 34 36 38 40

1 1 3 3 9 13 14 9 3 6 2

)

f2

(
0 20 22 24 26 28 30 32 34 36 38 40 42

1 1 1 3 3 6 10 15 16 5 1 1 1

)

f3

(
0 22 24 26 28 30 32 34 36 38 40

1 1 2 6 7 12 14 10 5 3 3

)

f4

(
0 24 26 28 30 32 34 36 38 40 42 44

1 1 4 5 14 13 10 10 2 1 2 1

)

Table 6.18: Laplacian Spectra of Cayley Graphs Associated with S-Box 3 BFs.

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 22 20 22 20

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.19: Cryptographic Properties of S-Box 3 BFs.

Spectral Observations

Table 6.20 depicts the relevant properties of the Cayley graphs associated with the S-Box 3
BFs.

112

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 50 49 50 51

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 2.2695×1092 2.2106×1092 2.2699×1092 1.761×1093

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.20: Properties of Cayley Graphs Associated with S-Box 3 BFs.

6.2.4 S-Box 4
S-Box 4 is displayed in Table 6.21.

S-Box 4
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 0111 1101 1110 0011 0000 0110 1001 1010
01 1101 1000 1011 0101 0110 1111 0000 0011
10 1010 0110 1001 0000 1100 1011 0111 1101
11 0011 1111 0000 0110 1010 0001 1101 1000

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 0001 0010 1000 0101 1011 1100 0100 1111
01 0100 0111 0010 1100 0001 1010 1110 1001
10 1111 0001 0011 1110 0101 0010 1000 0100
11 1001 0100 0101 1011 1100 0111 0010 1110

Table 6.21: S-Box 4 in Binary Form.

Table 6.22 lists the ANFs for the BFs of S-Box 4.

113

Function ANF Number of Terms Degree
f1 x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x1x2 ⊕ x1x3 ⊕ x1x4 ⊕

x2x4 ⊕ x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕
x3x6 ⊕ x5x6 ⊕ x1x3x4 ⊕ x2x3x4 ⊕ x1x2x5 ⊕
x2x3x5⊕x1x3x6⊕x2x3x6⊕x3x4x6⊕x2x5x6⊕
x3x5x6 ⊕ x1x2x3x4 ⊕ x2x3x4x5 ⊕ x1x3x4x6 ⊕
x2x3x4x6⊕x1x2x5x6⊕x1x3x5x6⊕x2x3x5x6⊕
x1x4x5x6 ⊕ x2x4x5x6 ⊕ x1x2x3x4x5 ⊕
x1x2x3x5x6

35 5

f2 1⊕x2⊕x5⊕x6⊕x1x2⊕x1x3⊕x1x4⊕x2x4⊕
x3x4 ⊕ x1x5 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕ x5x6 ⊕
x1x3x4⊕x1x2x5⊕x2x3x5⊕x1x3x6⊕x2x3x6⊕
x4x5x6 ⊕ x1x2x3x4 ⊕ x1x3x4x6 ⊕ x2x3x4x6 ⊕
x1x2x5x6⊕x1x3x5x6⊕x1x4x5x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x3x5x6

29 5

f3 1 ⊕ x1 ⊕ x3 ⊕ x2x3 ⊕ x2x4 ⊕ x1x5 ⊕ x2x5 ⊕
x3x5⊕ x4x5⊕ x1x6⊕ x4x6⊕ x5x6⊕ x1x3x4⊕
x1x3x5⊕x1x4x5⊕x2x4x5⊕x3x4x5⊕x2x3x6⊕
x2x5x6 ⊕ x4x5x6 ⊕ x1x2x3x5 ⊕ x1x2x4x5 ⊕
x1x3x4x5⊕x2x3x4x5⊕x1x2x3x6⊕x1x3x4x6⊕
x2x3x4x6⊕x2x3x5x6⊕x1x4x5x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x3x5x6

32 5

f4 x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4 ⊕
x1x5⊕ x2x5⊕ x1x6⊕ x4x6⊕ x5x6⊕ x1x3x4⊕
x1x3x5⊕x2x3x5⊕x1x4x5⊕x3x4x6⊕x2x5x6⊕
x1x2x3x5⊕x1x2x4x5⊕x1x3x4x5⊕x1x2x3x6⊕
x1x3x4x6⊕x2x3x4x6⊕x1x4x5x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x3x5x6

28 5

Table 6.22: ANF and Degree of S-Box 4 BFs.

Figure 6.3 displays the Walsh-Hadamard spectra of the S-Box 4 BFs obtained from R©. It
is assumed that the reader can easily compute the Walsh spectra via the relation in Equa-
tion 4.16.

114

Figure 6.3: Walsh-Hadamard Spectra of S-Box 4 BFs.

Tables 6.23, 6.24, and 6.25 follow in the same manner as before.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−10 −8 −4 −2 0 2 4 8 10 32

3 3 6 17 11 11 10 1 1 1

)
10

f2

(
−10 −8 −4 −2 0 2 4 8 10 32

1 3 6 11 11 17 10 1 3 1

)
10

f3

(
−10 −8 −4 −2 0 2 4 8 10 32

1 3 6 11 11 17 10 1 3 1

)
10

f4

(
−10 −8 −4 −2 0 2 4 8 10 32

3 3 10 9 11 19 6 1 1 1

)
10

Table 6.23: Cayley Graph Spectra of S-Box 4 BFs.

115

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 28 30 32 34 36 40 42

1 1 1 10 11 11 17 6 3 3

)

f2

(
0 22 24 28 30 32 34 36 40 42

1 3 1 10 17 11 11 6 3 1

)

f3

(
0 22 24 28 30 32 34 36 40 42

1 3 1 10 17 11 11 6 3 1

)

f4

(
0 22 24 28 30 32 34 36 40 42

1 1 1 6 19 11 9 10 3 3

)

Table 6.24: Laplacian Spectra of Cayley Graphs Associated with S-Box 4 BFs.

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 22 22 22 22

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.25: Cryptographic Properties of S-Box 4 BFs.

Spectral Observations

Table 6.26 depicts the relevant properties of the Cayley graphs associated with the S-Box 4
BFs.

116

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 53 53 53 53

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 1.7454×1093 2.26×1092 2.26×1092 1.7523×1093

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.26: Properties of Cayley Graphs Associated with S-Box 4 BFs.

6.2.5 S-Box 5
S-Box 5 is displayed in Table 6.27.

S-Box 5
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 0010 1100 0100 0001 0111 1010 1011 0110
01 1110 1011 0010 1100 0100 0111 1101 0001
10 0100 0010 0001 1011 1010 1101 0111 1000
11 1011 1000 1100 0111 0001 1110 0010 1101

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 1000 0101 0011 1111 1101 0000 1110 1001
01 0101 0000 1111 1010 0011 1001 1000 0110
10 1111 1001 1100 0101 0110 0011 0000 1110
11 0110 1111 0000 1001 1010 0100 0101 0011

Table 6.27: S-Box 5 in Binary Form.

Table 6.28 lists the ANFs for the BFs of S-Box 5.

117

Function ANF Number of Terms Degree
f1 x2 ⊕ x3 ⊕ x6 ⊕ x1x2 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕

x1x5 ⊕ x4x5 ⊕ x1x6 ⊕ x4x6 ⊕ x1x2x3 ⊕
x1x3x4⊕x2x3x5⊕x1x4x5⊕x3x4x5⊕x2x3x6⊕
x2x4x6 ⊕ x3x4x6 ⊕ x1x2x3x4 ⊕ x1x3x4x5 ⊕
x1x2x4x6⊕x1x3x4x6⊕x2x3x5x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x4x5x6

27 5

f2 1 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x4 ⊕
x3x4⊕x1x5⊕x1x6⊕x5x6⊕x1x3x4⊕x1x3x5⊕
x2x3x5⊕x1x4x5⊕x1x2x6⊕x1x4x6⊕x2x4x6⊕
x3x4x6 ⊕ x2x5x6 ⊕ x3x5x6 ⊕ x1x2x3x4 ⊕
x1x3x4x5⊕x1x3x4x6⊕x1x3x5x6⊕x2x3x5x6⊕
x1x4x5x6 ⊕ x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕
x1x2x4x5x6

30 5

f3 x1 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕
x1x4 ⊕ x3x4 ⊕ x4x5 ⊕ x1x6 ⊕ x2x3x4 ⊕
x1x2x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x1x2x6 ⊕
x1x4x6 ⊕ x2x4x6 ⊕ x1x5x6 ⊕ x2x5x6 ⊕
x4x5x6 ⊕ x1x2x3x5 ⊕ x1x2x4x5 ⊕ x1x3x4x5 ⊕
x2x3x4x6⊕x1x2x5x6⊕x2x3x5x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x3x5x6⊕ x1x2x4x5x6

30 5

f4 1 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x2x3 ⊕ x1x4 ⊕
x2x4 ⊕ x3x4 ⊕ x1x5 ⊕ x3x5 ⊕ x2x6 ⊕ x3x6 ⊕
x1x2x4⊕x1x3x4⊕x2x3x4⊕x2x3x5⊕x1x4x5⊕
x3x4x5⊕x1x2x6⊕x1x3x6⊕x3x4x6⊕x1x5x6⊕
x2x5x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x2x3x4 ⊕
x1x2x4x5⊕x1x3x4x5⊕x2x3x4x5⊕x1x2x4x6⊕
x1x3x4x6⊕x2x3x4x6⊕x1x3x5x6⊕x2x4x5x6⊕
x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕ x1x2x3x5x6 ⊕
x1x2x4x5x6

39 5

Table 6.28: ANF and Degree of S-Box 5 BFs.

118

Figure 6.4 displays the Walsh-Hadamard spectra of the S-Box 5 BFs obtained from R©. It
is again assumed that the reader can compute the Walsh spectra via the relation in Equa-
tion 4.16.

Figure 6.4: Walsh-Hadamard Spectra of S-Box 5 BFs.

Tables 6.29, 6.30, and 6.31 follow in the same manner as before.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 32

1 4 2 7 15 14 9 5 4 1 1 1

)
12

f2

(
−6 −4 −2 0 2 4 6 8 32

5 9 11 10 11 7 5 5 1

)
9

f3

(
−8 −6 −4 −2 0 2 4 6 8 32

4 5 9 11 10 11 7 5 1 1

)
10

f4

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 32

1 2 3 6 6 15 16 6 5 2 1 1

)
12

Table 6.29: Cayley Graph Spectra of S-Box 5 BFs.

119

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 26 28 30 32 34 36 38 40 42

1 1 1 4 5 9 14 15 7 2 4 1

)

f2

(
0 24 26 28 30 32 34 36 38

1 5 5 7 11 10 11 9 5

)

f3

(
0 24 26 28 30 32 34 36 38 40

1 1 5 7 11 10 11 9 5 4

)

f4

(
0 22 24 26 28 30 32 34 36 38 40 42

1 1 2 5 6 16 15 6 6 3 2 1

)

Table 6.30: Laplacian Spectra of Cayley Graphs Associated with S-Box 5 BFs.

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 22 24 24 22

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.31: Cryptographic Properties of S-Box 5 BFs.

Spectral Observations

Table 6.32 depicts the relevant properties of the Cayley graphs associated with the S-Box 5
BFs.

120

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 50 54 54 49

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 1.7206×1093 2.2469×1092 1.7337×1093 2.286×1092

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.32: Properties of Cayley Graphs Associated with S-Box 5 BFs.

6.2.6 S-Box 6
S-Box 6 is displayed in Table 6.33.

S-Box 6
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 1100 0001 1010 1111 1001 0010 0110 1000
01 1010 1111 0100 0010 0111 1100 1001 0101
10 1001 1110 1111 0101 0010 1000 1100 0011
11 0100 0011 0010 1100 1001 0101 1111 1010

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 0000 1101 0011 0100 1110 0111 0101 1011
01 0110 0001 1101 1110 0000 1011 0011 1000
10 0111 0000 0100 1010 0001 1101 1011 0110
11 1011 1110 0001 0111 0110 0000 1000 1101

Table 6.33: S-Box 6 in Binary Form.

Table 6.34 lists the ANFs for the BFs of S-Box 6.

121

Function ANF Number of Terms Degree
f1 1⊕x2⊕x3⊕x6⊕x2x3⊕x1x4⊕x2x4⊕x3x4⊕

x1x5⊕x4x5⊕x2x6⊕x5x6⊕x1x2x3⊕x1x3x4⊕
x2x3x4⊕x1x3x5⊕x2x3x5⊕x1x4x5⊕x2x4x5⊕
x3x4x5 ⊕ x1x4x6 ⊕ x1x5x6 ⊕ x1x2x3x4 ⊕
x2x3x4x5⊕x2x3x4x6⊕x1x2x5x6⊕x2x3x5x6⊕
x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕ x1x2x3x5x6 ⊕
x1x2x4x5x6

31 5

f2 1⊕ x1⊕ x4⊕ x5⊕ x6⊕ x1x3⊕ x2x5⊕ x3x5⊕
x2x6 ⊕ x5x6 ⊕ x1x2x4 ⊕ x2x3x4 ⊕ x1x2x5 ⊕
x2x3x6 ⊕ x1x4x6 ⊕ x1x5x6 ⊕ x4x5x6 ⊕
x1x2x3x5⊕x1x3x4x5⊕x1x2x3x6⊕x1x3x4x6⊕
x2x3x4x6⊕x1x2x5x6⊕x2x3x5x6⊕x1x4x5x6⊕
x2x4x5x6 ⊕ x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕
x1x2x3x5x6⊕ x1x2x4x5x6

30 5

f3 1⊕ x1⊕ x2⊕ x5⊕ x6⊕ x1x3⊕ x2x3⊕ x1x4⊕
x2x4 ⊕ x3x4 ⊕ x1x5 ⊕ x3x5 ⊕ x4x5 ⊕ x5x6 ⊕
x1x2x3⊕x2x3x4⊕x1x2x5⊕x2x3x5⊕x1x4x5⊕
x2x4x5⊕x3x4x5⊕x1x2x6⊕x1x4x6⊕x2x5x6⊕
x1x2x3x4⊕x1x2x3x5⊕x1x2x4x5⊕x1x3x4x5⊕
x2x3x4x5⊕x1x3x4x6⊕x1x2x5x6⊕x1x3x5x6⊕
x2x3x5x6 ⊕ x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕
x1x2x4x5x6

36 5

f4 x1 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x4 ⊕
x2x4⊕ x3x4⊕ x2x5⊕ x3x5⊕ x4x6⊕ x1x2x3⊕
x1x3x4⊕x2x3x4⊕x1x2x5⊕x1x3x5⊕x2x3x6⊕
x2x4x6 ⊕ x3x4x6 ⊕ x3x5x6 ⊕ x1x2x3x5 ⊕
x1x2x3x6⊕x1x3x4x6⊕x1x3x5x6⊕x2x3x5x6⊕
x1x4x5x6⊕ x1x2x3x5x6⊕ x1x2x4x5x6

29 5

Table 6.34: ANF and Degree of S-Box 6 BFs.

122

Figure 6.5 displays the Walsh-Hadamard spectra of the S-Box 6 BFs obtained from R©. It
is again assumed that the reader can compute the Walsh spectra via the relation in Equa-
tion 4.16.

Figure 6.5: Walsh-Hadamard Spectra of S-Box 6 BFs.

Tables 6.35, 6.36, and 6.37 follow in the same manner as before.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−10 −6 −4 −2 0 2 4 6 8 10 32

1 3 8 12 11 12 8 3 4 1 1

)
11

f2

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 32

1 2 2 4 13 13 13 8 2 4 1 1

)
12

f3

(
−10 −6 −4 −2 0 2 4 6 8 10 32

2 2 6 12 13 12 10 2 2 2 1

)
11

f4

(
−10 −8 −6 −4 −2 0 2 4 6 8 32

2 3 3 5 15 14 9 7 3 2 1

)
11

Table 6.35: Cayley Graph Spectra of S-Box 6 BFs.

123

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 26 28 30 32 34 36 38 42

1 1 4 3 8 12 11 12 8 3 1

)

f2

(
0 22 24 26 28 30 32 34 36 38 40 42

1 1 4 2 8 13 13 13 4 2 2 1

)

f3

(
0 22 24 26 28 30 32 34 36 38 42

1 2 2 2 10 12 13 12 6 2 2

)

f4

(
0 24 26 28 30 32 34 36 38 40 42

1 2 3 7 9 14 15 5 3 3 2

)

Table 6.36: Laplacian Spectra of Cayley Graphs Associated with S-Box 6 BFs.

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 22 22 22 22

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.37: Cryptographic Properties of S-Box 6 BFs.

Spectral Observations

Table 6.38 depicts the relevant properties of the Cayley graphs associated with the S-Box 6
BFs.

124

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 53 51 51 50

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 2.2498×1092 2.2657×1092 2.2628×1092 1.7426×1093

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.38: Properties of Cayley Graphs Associated with S-Box 6 BFs.

6.2.7 S-Box 7
S-Box 7 is displayed in Table 6.39.

S-Box 7
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 0100 1011 0010 1110 1111 0000 1000 1101
01 1101 0000 1011 0111 0100 1001 0001 1010
10 0001 0100 1011 1101 1100 0011 0111 1110
11 0110 1011 1101 1000 0001 0100 1010 0111

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 0011 1100 1001 0111 0101 1010 0110 0001
01 1110 0011 0101 1100 0010 1111 1000 0110
10 1010 1111 0110 1000 0000 0101 1001 0010
11 1001 0101 0000 1111 1110 0010 0011 1100

Table 6.39: S-Box 7 in Binary Form.

Table 6.40 lists the ANFs for the BFs of S-Box 7.

125

Function ANF Number of Terms Degree
f1 x1 ⊕ x3 ⊕ x5 ⊕ x1x2 ⊕ x1x4 ⊕ x2x4 ⊕ x1x5 ⊕

x1x6 ⊕ x2x6 ⊕ x4x6 ⊕ x5x6 ⊕ x2x3x4 ⊕
x1x2x5⊕x3x4x5⊕x1x2x6⊕x2x4x6⊕x2x5x6⊕
x4x5x6 ⊕ x1x2x4x5 ⊕ x1x3x4x5 ⊕ x2x3x4x5 ⊕
x2x3x4x6⊕x1x2x5x6⊕x1x4x5x6⊕x2x4x5x6⊕
x1x2x3x4x6⊕ x1x2x4x5x6

27 5

f2 1⊕x2⊕x3⊕x5⊕x1x2⊕x2x3⊕x1x4⊕x2x4⊕
x1x5⊕x2x5⊕x2x6⊕x4x6⊕x1x2x3⊕x2x4x5⊕
x2x4x6 ⊕ x1x5x6 ⊕ x1x2x3x4 ⊕ x1x3x4x5 ⊕
x2x3x4x5⊕x1x2x4x6⊕x1x3x4x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x4x5x6

24 5

f3 x4 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x5 ⊕
x3x5 ⊕ x1x6 ⊕ x2x3x4 ⊕ x1x2x5 ⊕ x1x3x5 ⊕
x1x2x6⊕x1x4x6⊕x2x4x6⊕x3x4x6⊕x1x5x6⊕
x2x5x6 ⊕ x3x5x6 ⊕ x1x2x4x5 ⊕ x1x3x4x5 ⊕
x1x3x4x6⊕x2x3x4x6⊕x1x2x5x6⊕x1x3x5x6⊕
x1x4x5x6⊕ x1x2x3x4x6⊕ x1x2x4x5x6

28 5

f4 x1⊕ x2⊕ x3⊕ x4⊕ x6⊕ x2x3⊕ x1x4⊕ x3x4⊕
x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x1x2x3 ⊕ x1x2x4 ⊕
x1x3x4 ⊕ x2x3x4 ⊕ x1x2x5 ⊕ x1x3x5 ⊕
x2x3x5 ⊕ x2x4x6 ⊕ x3x4x6 ⊕ x3x5x6 ⊕
x1x2x3x4⊕x1x2x3x5⊕x1x2x3x6⊕x1x2x4x6⊕
x1x3x4x6⊕x1x3x5x6⊕x2x3x5x6⊕x1x4x5x6⊕
x1x2x3x4x6⊕ x1x2x3x5x6⊕ x1x2x4x5x6

32 5

Table 6.40: ANF and Degree of S-Box 7 BFs.

Figure 6.6 displays the Walsh-Hadamard spectra of the S-Box 7 BFs obtained from R©. It
is again assumed that the reader can compute the Walsh spectra via the relation in Equa-
tion 4.16.

126

Figure 6.6: Walsh-Hadamard Spectra of S-Box 7 BFs.

Tables 6.41, 6.42, and 6.43 follow in the same manner as before.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 32

1 5 1 6 16 13 10 6 3 1 1 1

)
12

f2

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 32

1 2 2 4 10 19 12 4 5 2 2 1

)
12

f3

(
−8 −6 −4 −2 0 2 4 6 8 32

3 7 9 7 14 13 3 5 2 1

)
10

f4

(
−8 −6 −4 −2 0 2 4 6 8 10 32

5 2 7 17 12 9 5 3 2 1 1

)
11

Table 6.41: Cayley Graph Spectra of S-Box 7 BFs.

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 22 24 26 28 30 32 34 36 38 40 42

1 1 1 3 6 10 13 16 6 1 5 1

)

f2

(
0 22 24 26 28 30 32 34 36 38 40 42

1 2 2 5 4 12 19 10 4 2 2 1

)

f3

(
0 24 26 28 30 32 34 36 38 40

1 2 5 3 13 14 7 9 7 3

)

f4

(
0 22 24 26 28 30 32 34 36 38 40

1 1 2 3 5 9 12 17 7 2 5

)

Table 6.42: Laplacian Spectra of Cayley Graphs Associated with S-Box 7 BFs.

127

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 22 22 24 22

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.43: Cryptographic Properties of S-Box 7 BFs.

Spectral Observations

Table 6.44 depicts the relevant properties of the Cayley graphs associated with the S-Box 7
BFs.

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 51 45 50 52

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 1.727×1093 2.2533×1092 1.7258×1093 1.7076×1093

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.44: Properties of Cayley Graphs Associated with S-Box 7 BFs.

6.2.8 S-Box 8

S-Box 8 is displayed in Table 6.45.

128

S-Box 8
ROW/COL 0000 0001 0010 0011 0100 0101 0110 0111

00 1101 0010 1000 0100 0110 1111 1011 0001
01 0001 1111 1101 1000 1010 0011 0111 0100
10 0111 1011 0100 0001 1001 1100 1110 0010
11 0010 0001 1110 0111 0100 1010 1000 1101

ROW/COL 1000 1001 1010 1011 1100 1101 1110 1111

00 1010 1001 0011 1110 0101 0000 1100 0111
01 1100 0101 0110 1011 0000 1110 1001 0010
10 0000 0110 1010 1101 1111 0011 0101 1000
11 1111 1100 1001 0000 0011 0101 0110 1011

Table 6.45: S-Box 8 in Binary Form.

129

Table 6.46 lists the ANFs for the BFs of S-Box 8.

Function ANF Number of Terms Degree
f1 1⊕x2⊕x3⊕x5⊕x1x2⊕x1x4⊕x1x5⊕x4x5⊕

x1x6⊕x2x6⊕x3x6⊕x4x6⊕x2x3x4⊕x1x2x5⊕
x1x3x5⊕x2x3x5⊕x1x4x5⊕x2x4x5⊕x1x2x6⊕
x2x3x6⊕x2x4x6⊕x3x4x6⊕x1x5x6⊕x4x5x6⊕
x1x2x4x5⊕x2x3x4x6⊕x1x2x5x6⊕x1x4x5x6⊕
x2x4x5x6⊕ x1x2x3x4x6⊕ x1x2x4x5x6

31 5

f2 x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x1x2 ⊕ x2x4 ⊕ x3x4 ⊕
x1x5 ⊕ x2x6 ⊕ x1x2x3 ⊕ x1x3x4 ⊕ x1x2x5 ⊕
x1x3x5 ⊕ x2x3x5 ⊕ x1x2x6 ⊕ x1x3x6 ⊕
x2x3x6 ⊕ x1x4x6 ⊕ x2x4x6 ⊕ x3x4x6 ⊕
x1x5x6 ⊕ x2x5x6 ⊕ x1x2x3x4 ⊕ x1x2x3x5 ⊕
x1x2x4x5⊕x1x2x3x6⊕x1x2x5x6⊕x2x4x5x6⊕
x1x2x3x4x5⊕ x1x2x4x5x6

30 5

f3 x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x1x2 ⊕ x2x3 ⊕ x2x4 ⊕
x3x4 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕ x3x6 ⊕ x4x6 ⊕
x1x3x4 ⊕ x2x3x4 ⊕ x1x2x5 ⊕ x1x3x5 ⊕
x2x3x5⊕x1x4x5⊕x1x2x6⊕x1x3x6⊕x1x4x6⊕
x2x4x6 ⊕ x3x4x6 ⊕ x1x2x4x5 ⊕ x1x3x4x6 ⊕
x2x3x4x6⊕x1x2x5x6⊕x2x3x5x6⊕x1x4x5x6⊕
x1x2x3x4x6⊕ x1x2x4x5x6

32 5

f4 x2 ⊕ x4 ⊕ x6 ⊕ x1x2 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4 ⊕
x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x2x6 ⊕ x4x6 ⊕ x5x6 ⊕
x1x3x4⊕x2x3x5⊕x1x2x6⊕x1x4x6⊕x1x5x6⊕
x3x5x6 ⊕ x1x2x3x5 ⊕ x1x3x5x6 ⊕ x2x3x5x6 ⊕
x2x4x5x6⊕ x1x2x3x4x5⊕ x1x2x3x5x6

25 5

Table 6.46: ANF and Degree of S-Box 8 BFs.

Figure 6.7 displays the Walsh-Hadamard spectra of the S-Box 8 BFs obtained from R©. It
is again assumed that the reader can compute the Walsh spectra via the relation in Equa-
tion 4.16.

130

Figure 6.7: Walsh-Hadamard Spectra of S-Box 8 BFs.

Tables 6.47, 6.48, and 6.49 follow in the same manner as before.

Function Cayley Graph Spectra (λ1 ≤ λ2 ≤ ·· · ≤ λn) Distinct λi

f1

(
−8 −6 −4 −2 0 2 4 6 8 32

2 7 3 5 16 17 5 3 5 1

)
10

f2

(
−10 −8 −6 −4 −2 0 2 4 6 8 32

2 4 2 7 10 14 14 5 4 1 1

)
11

f3

(
−10 −8 −6 −4 −2 0 2 4 6 8 10 32

1 4 4 3 17 14 7 9 2 1 1 1

)
12

f4

(
−10 −8 −6 −4 −2 0 2 4 6 8 32

1 3 5 6 13 13 11 6 2 3 1

)
11

Table 6.47: Cayley Graph Spectra of S-Box 8 BFs.

Function Laplacian Spectra (µ1 ≤ µ2 ≤ ·· · ≤ µn)

f1

(
0 24 26 28 30 32 34 36 38 40

1 5 3 5 17 16 5 3 7 2

)

f2

(
0 24 26 28 30 32 34 36 38 40 42

1 1 4 5 14 14 10 7 2 4 2

)

f3

(
0 22 24 26 28 30 32 34 36 38 40 42

1 1 1 2 9 7 14 17 3 4 4 1

)

f4

(
0 24 26 28 30 32 34 36 38 40 42

1 3 2 6 11 13 13 6 5 3 1

)

Table 6.48: Laplacian Spectra of Cayley Graphs Associated with S-Box 8 BFs.

131

Crypto Property f1 f2 f3 f4

Degree 5 5 5 5

Balanced Yes Yes Yes Yes

Weight 32 32 32 32

Nonlinearity 24 22 22 22

Algebraic Immunity 3 3 3 3

Correlation Immunity Order 0 0 0 0

Resiliency Order 0 0 0 0

Table 6.49: Cryptographic Properties of S-Box 8 BFs.

Spectral Observations
Table 6.50 depicts the relevant properties of the Cayley graphs associated with the S-Box 8
BFs.

Graph Parameter Γ f1 Γ f2 Γ f3 Γ f4

Regularity; deg Yes; 32 Yes; 32 Yes; 32 Yes; 32

Connected; k(Γ f) Yes; 1 Yes; 1 Yes; 1 Yes; 1

Bipartite No No No No

Rank(A fi) 48 50 50 51

Diameter 2 2 2 2

Spanning Trees; τ(Γ f) 2.2801×1092 1.0980×1090 1.7276×1093 1.7299×1093

Clique Number 8 8 8 8

Independence Number 8 8 8 8

Chromatic Number 8 8 8 8

Table 6.50: Properties of Cayley Graphs Associated with S-Box 8 BFs.

6.3 Relations
The following observed relations are specific to the DES S-Box BFs and their associated
Cayley graphs. These should not be universalized to all BFs used in similar substitution
steps within a cryptosystem.

1. The constant term 1 appears in the ANF of a BF if and only if the associated Cayley

132

graph has a loop at every vertex.
2. The functions within an S-Box with the smallest number of terms in their ANF also

have the smallest number of degree 5 terms.
3. Within the same S-Box, if multiple Cayley graphs have the same set of eigenvalues,

then their corresponding BFs have the same nonlinearity. Furthermore, this nonlin-
earity is 22.

4. The function(s) with the highest nonlinearity also have the smallest number of dis-
tinct eigenvalues when compared to other functions within the same S-Box; similarly,
the function(s) with the lowest nonlinearity also have the largest number of distinct
eigenvalues.

5. Of the 32 total functions, seven achieve the maximum nonlinearity of 24. These
seven functions as graphs do not contain ±10 as eigenvalues.

6. Six of the 32 total functions achieve a nonlinearity of 22. These functions as graphs
do not have ±12 as eigenvalues. Furthermore, these functions have at most 31 terms
in their ANF. The functions with nonlinearity 22 also have the largest number of
distinct eigenvalues when compared to other functions within the same S-Box.

7. A function achieves the minimum nonlinearity of 20 if and only if λi ∈ {±12}.
8. The Cayley graph with the largest multiplicity of 0 as an eigenvalue in each S-Box

also has an adjacency matrix A with the smallest rank. Furthermore, if two or more
Cayley graphs within the same S-Box have the same multiplicity of 0 as an eigen-
value, then their corresponding adjacency matrices have the same rank.

9. There is no observed pattern in the number of spanning trees in the Cayley graphs.
This is somewhat interesting since all of the graphs are 32-regular, and have the same
diameter, chromatic number, independence number, and clique number.

10. S-Box 2 is the only box to use a BF with algebraic degree four. Surprisingly, this
function achieves the maximum nonlinearity of 24 and its Cayley graph has the
smallest number of distinct eigenvalues across all S-Boxes.

11. Beginning with S-Box 3, at least two functions within each box have the same set of
eigenvalues.

12. S-Box 4 is rather interesting with regards to the Cayley spectrum. Hellman and Davio
noted the redundancy in this S-Box, sparking many to believe that this box was the
trap door left behind by the designers. All four BFs in the fourth S-Box have the

133

same nonlinearity, the same set of Cayley eigenvalues, and their adjacency matrices
all have the same rank. Granted, the ANFs are different, but the second and third
functions have Cayley graphs with the exact same spectra.

13. The set of possible nonlinearity values {20,22,24} is the same as the set of spectral

gap12values. Furthermore, for S-Boxes 4-7, these two values are equal.

6.4 Expanders
Recall in Subsection 5.3.2 we introduced the Cheeger constant with respect to cuts in a
graph. Another application of connectivity deals with the expander graph. The expander
graph is a regular graph (typically of small degree) such that the number of neighbors of
any subset of the vertex set containing at most half of the total nodes is at least a constant
factor of its size [85]. More formally, an ε-expander is a regular graph G = (V,E) such that
for every set S ⊂ V with |S| ≤ |V |2 , the number of nodes in V\S adjacent to some x ∈ S is
at least ε|S|. If the spectral gap for a r-regular graph is at least 2εr, then the graph is an
ε-expander [85]. Also [104], an r-regular graph is an ε-expander if the Cheeger constant,
hG is at least ε , i.e., hG ≥ ε . Hence, the term expansion is closely related with cuts (vertex,
edge, spectral, etc.). Since expander graphs exhibit strong connectivity properties, they are
often sought out in many computer based algorithms.

Expanders have wide applications, especially in computer science and the design of com-
munication networks. Expander graphs were first defined in the 1970s [105] by Leonid
Bassalygo and Michael Pinsker. It is generally difficult to construct an expander graph
from scratch, since they are simultaneously sparse and highly connected. Thus, much of
the work dealing with these graphs is theoretical in nature. However, random graphs often
make good expanders, and we have multiple construction methods to do this. Expander
graphs also have application in error correcting codes as well as pseudorandom numbers.

Construction of r-regular expanders implies control of the spectral gap, denoted from now
on as λ = r−λn−1. Cheeger and Peter Buser bounded the Cheeger constant in terms of the
spectral gap as

λ

2
≤ hG ≤

√
2rλ .

12The spectral gap is defined to be the difference between the largest and second largest eigenvalue, i.e.,
λn−λn−1. See Section 6.4.

134

The question remains how large the spectral gap can be. This question obviously relies
on the value for λn−1, and by the bounds on the Cheeger constant we see that a large
spectral gap implies high expansion. Alon and Ravi Boppana showed that this gap could
be expressed by bounding the second largest eigenvalue. In particular,

λn−1 ≥ 2
√

r−1−on(1),

where the term on(1) tends to zero as n becomes large [105]. This term is simplified from a
fractional ratio of a constant and the diameter of a graph. The interesting case occurs when
this inequality is not satisfied.

Alexander Lubotzky et al. [89] coined the term Ramanujan graph for an r-regular graph in
which the largest eigenvalue other than λn = r is less than or equal to the Alon-Boppana
bound. Ramanujan graphs are named after Indian mathematician Srinivasa Ramanujan,
and because they achieve close to the largest spectral gap possible, Ramanujan graphs
give good explicit constructions for expanders; they are often considered to be the most
well-connected among regular graphs. Precisely, let G be an r-regular graph and let λ (G)

be max
|λi|<r

|λi|. Then G is Ramanujan if λ (G) ≤ 2
√

r−1. Interestingly, Lubotzky et al.

constructed their Ramanujan graphs from Cayley graphs; the Petersen graph is an example
of a Ramanujan graph. As a consequence, most constructions of Ramanujan graphs are
algebraic in nature. Ramanujan graphs have an interesting niche in coding theory; certain
codes such as Robert Gallager’s Low Density Parity Check Codes can be constructed using
Ramanujan graphs [106]. Since these graphs are good examples of connectivity, a family

of Ramanujan graphs can yield a family of expanders.

While the literature varies about loop inclusion, Table 6.51 includes the DES Boolean Cay-
ley graphs that satisfy the Ramanujan property, namely λ ≤ 2

√
32−1 ≈ 11.13552873.

If loops are included, then 26 out of the 32 Cayley graphs are Ramanujan. A star (*)
indicates that the corresponding Cayley graph has loops. Given the large number of Ra-
manujan graphs in Table 6.51 out of the 32 possible, perhaps this yields important design
considerations about S-Box construction using BFs. Interestingly, the six graphs that are
not Ramanujan are also the only ones in which the associated BFs achieve the smallest
nonlinearity of 20.

135

S-Box Ramanujan
S1 f ∗4
S2 f2, f3, f ∗4
S3 f ∗1 , f ∗3
S4 f1, f ∗2 , f ∗3 , f4

S5 f1, f ∗2 , f3, f ∗4
S6 f ∗1 , f ∗2 , f ∗3 , f4

S7 f1, f ∗2 , f3, f4

S8 f ∗1 , f2, f3, f4

Table 6.51: The DES Functions with Ramanujan Cayley Graphs.

6.5 Distance to Linear Functions
An interesting application of nonlinearity involves finding the nearest linear or affine func-
tion to a BF. Recall the WHT given by

F̂(uuu) =W (f̂)(uuu) = ∑
xxx∈Fn

2

(−1) f (xxx)⊕<uuu·xxx>.

This equation is also equal to the number of 0s minus the number of 1s in the function
f ⊕ `uuu, where `uuu is the linear function `uuu(vvv). Thus, W (f̂)(uuu) = 2n− 2wt(f ⊕ `uuu) = 2n−
2d(f , `uuu). It follows that for a function f and a fixed linear function `uuu(vvv), we have

d(f , `uuu) =
1
2
(2n−W (f̂)(uuu)). (6.1)

Equation 6.1 implies that the nearest affine function `uuu,a0(vvv) = a0⊕〈uuu,vvv〉,a0 ∈ F2, to f (in
terms of Hamming distance) is the function where |W (f̂)(uuu)| is the largest [39]. We give
an example of how to find the nearest affine function to the first S-Box BF, and then the
remaining functions are merely listed.

First recall that the nonlinearity of f1 in S-Box 1 is 20, i.e., N f1 = 20. The largest
Walsh-Hadamard (absolute) value of this function is 24, which occurs for the input vec-

136

tor α43 = 101011. To find the nearest affine function, we compute

`uuu,a0(vvv) = a0⊕〈uuu,vvv〉
`α43,1(vvv) = 1⊕〈101011,vvv〉

= 1⊕ (101011) · (x6,x5,x4,x3,x2,x1)

= 1⊕ x1⊕ x2⊕ x4⊕ x6.

As a check, we can see that d(f1, `α43,1) =
1
2(2

6−24) = 20, which matches the nonlinearity
of f1. Thus, we need to change 20 bits in f1 in order to arrive at the affine function 1⊕x1⊕
x2⊕ x4⊕ x6. It should also be noted that some of the DES functions have multiple vectors
which yield the largest WHT value, e.g., f4 in S-Box 1 has eight vectors that produce ±16.
For these such functions, we only list one possible affine function. Table 6.52 lists the
nearest affine functions to the DES S-Box functions.

137

S-Box Function N fi ααα Nearest Affine Function
1 f2 20 54 x2⊕ x3⊕ x5⊕ x6

1 f3 20 41 x1⊕ x4⊕ x6

1 f4 24 53 1⊕ x1⊕ x3⊕ x5⊕ x6

2 f1 20 47 1⊕ x1⊕ x2⊕ x3⊕ x4⊕ x6

2 f2 24 15 x1⊕ x2⊕ x3⊕ x4

2 f3 22 21 x1⊕ x3⊕ x5

2 f4 24 61 1⊕ x1⊕ x3⊕ x4⊕ x5⊕ x6

3 f1 22 49 1⊕ x1⊕ x5⊕ x6

3 f2 20 54 1⊕ x2⊕ x3⊕ x5⊕ x6

3 f3 22 29 1⊕ x1⊕ x3⊕ x4⊕ x5

3 f4 20 28 x3⊕ x4⊕ x5

4 f1 22 14 x2⊕ x3⊕ x4

4 f2 22 30 1⊕ x2⊕ x3⊕ x4⊕ x5

4 f3 22 14 1⊕ x2⊕ x3⊕ x4

4 f4 22 13 x1⊕ x3⊕ x4

5 f1 22 20 x3⊕ x5

5 f2 24 46 1⊕ x2⊕ x3⊕ x4⊕ x6

5 f3 24 42 x2⊕ x4⊕ x6

5 f4 22 52 1⊕ x3⊕ x5⊕ x6

6 f1 22 31 1⊕ x1⊕ x2⊕ x3⊕ x4⊕ x5

6 f2 22 29 1⊕ x1⊕ x3⊕ x4⊕ x5

6 f3 22 55 1⊕ x1⊕ x2⊕ x3⊕ x5⊕ x6

6 f4 22 41 x1⊕ x4⊕ x6

7 f1 22 46 x2⊕ x3⊕ x4⊕ x6

7 f2 22 20 1⊕ x3⊕ x5

7 f3 24 40 x4⊕ x6

7 f4 22 62 x2⊕ x3⊕ x4⊕ x5⊕ x6

8 f1 24 43 1⊕ x1⊕ x2⊕ x4⊕ x6

8 f2 22 12 x3⊕ x4

8 f3 22 56 x4⊕ x5⊕ x6

8 f4 22 50 x2⊕ x5⊕ x6

Table 6.52: The Nearest Affine Functions to the DES S-Box BFs.

138

CHAPTER 7:
Extensions on DES Substitution Boxes

Recall that Adams and Tavares [50] explained that good BFs used in S-Boxes need to
satisfy the SAC. Granted, the SAC did not exist at the time that DES was introduced, and
Webster and Tavares [58] even demonstrated that the DES S-Boxes do not satisfy the SAC.
In this chapter, we analyze one of the design criteria of the DES S-Boxes and apply it to
the coordinate vectorial BFs.

7.1 Methods
The specific design criteria we examine is listed by Coppersmith [21] as property (S-5),
i.e., by complementing the middle two input bits, we should see the output bits differing
in at least two positions. Mathematically, the DES S-Boxes are required to adhere to the
following: f (xxx) and f (xxx⊕001100) differ in at least two bits. This criterion was based on
the S-Box as a function, i.e., f : F6

2→ F4
2. We cannot specifically examine this property on

the coordinate BFs because our outputs are single bits rather than strings of four bits. Thus,
we perform a PC(2) check on the coordinate functions using Coppersmith’s vector 001100.
We aim to answer the following questions in this chapter:

1. Do the DES S-Box coordinate functions satisfy the PC of degree 2?
2. Do the DES S-Box coordinate functions satisfy the PC of degree 1, i.e., SAC?

Recall that for a function to satisfy the PC of degree k = 2, we need to check all possible
two-bit changes in the inputs and verify that the output changes in exactly one half of the
total outputs. Also recall that this can be done by either counting the number of positions
where f (xxx) and f (xxx⊕aaa) differ, or by verifying that the weight of f (xxx)⊕ f (xxx⊕aaa) = 2n−1.
If wt(f (xxx)⊕ f (xxx⊕001100)) 6= 32 for any function fi in the DES S-Boxes, 1≤ i≤ 32, then
we can conclude that fi does not satisfy PC(2).

We already know that the DES S-Boxes do not satisfy the SAC, but this does not imply that
the row functions do not satisfy this property. We aim to shed light on this concept in this
chapter.

139

7.2 Results on Propagation Criteria of Degree 2
Tables 7.1, 7.2, 7.3, and 7.4 display the results of the PC(2) check for the vector 001100.
If a row is highlighted in green, then it satisfies the check for this vector; all others are
eliminated from the check.

S-Box 1
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 36
f2 32
f3 36
f4 32

S-Box 2
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 24
f2 24
f3 32
f4 32

Table 7.1: Results of PC(2) Check on S-Boxes 1 and 2.

S-Box 3
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 28
f2 32
f3 24
f4 32

S-Box 4
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 28
f2 28
f3 28
f4 28

Table 7.2: Results of PC(2) Check on S-Boxes 3 and 4.

S-Box 5
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 28
f2 36
f3 32
f4 36

S-Box 6
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 28
f2 24
f3 28
f4 32

Table 7.3: Results of PC(2) Check on S-Boxes 5 and 6.

140

S-Box 7
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 24
f2 32
f3 28
f4 32

S-Box 8
fi wt(f (xxx)⊕ f (xxx⊕001100))

f1 28
f2 32
f3 40
f4 36

Table 7.4: Results of PC(2) Check on S-Boxes 7 and 8.

For these 11 functions that are still eligible to satisfy PC(2), eight are further eliminated
with a check on the vector aaa = 110000. The final three are also eliminated with checks
on vectors bbb = 101000 and ccc = 100100. Therefore, we reach the following conclusion
concerning PC.

Result 1: The 32 coordinate BFs comprising the DES S-Boxes do not satisfy PC(2).

7.3 Results on Strict Avalanche Criteria

In this section, we display the results of the SAC check on the DES S-Box coordinate
functions. Table 7.5 depicts the check of SAC using the vector aaa = 100000.

141

S-Boxes 1-4
fi wt(f (xxx)⊕ f (xxx⊕100000))

S1

48
44
48
40

S2

36
44
44
40

S3

44
52
40
36

S4

48
36
48
36

S-Boxes 5-8
fi wt(f (xxx)⊕ f (xxx⊕100000))

S5

36
48
44
48

S6

44
40
40
48

S7

44
36
48
48

S8

44
40
44
40

Table 7.5: Results of SAC Check on DES S-Boxes.

Note that there are no functions in Table 7.5 with a corresponding weight of 32 in the
second column. Since none of these functions have this property, there is no need to check
any other vector of weight one in F6

2. Therefore, we reach the following conclusion:

Result 2: The 32 coordinate BFs comprising the DES S-Boxes do not satisfy PC(1), i.e.,
SAC. Furthermore, we are justified in stating the implication from Webster and
Tavares (only for DES). If the S-Box function f : F6

2 → F4
2 does not satisfy the

SAC, then its coordinate BFs do not satisfy the SAC either.

142

CHAPTER 8:
Conclusion

In this chapter, we summarize the findings of this thesis and present some aspects requiring
further research.

8.1 Summary of Results
The goal of this thesis was to analyze DES in a new light. We used techniques from
spectral graph theory to make statements about the Cayley graphs associated with the DES
BFs. Several loose connections were also made between the cryptographic properties of
these BFs and the Cayley graph spectra.

The Cayley graphs of these BFs all seem to share many of the same graph properties, par-
ticularly in diameter, clique number, independence number, and chromatic number. Since
all 32 graphs are 32-regular, however, this is not so hard to believe. Many of the crypto-
graphic properties of the BFs are also the same, such as degree, balance, weight, algebraic
immunity, correlation immunity, and resiliency. The nonlinearity of the BFs is the primary
property of variance, and it seems to be related to the multiplicity of the graph eigenvalues
(in the case of DES at least).

We also found a new characterization of the DES Cayley graphs as Ramanujan graphs.
These are graphs with special properties in regards to expansion; expansion relies on the
size of the spectral gap. Also, we confirmed that the DES BFs do not satisfy the SAC nor
the PC(2).

8.2 Areas for Future Work
There are other areas that could be extended from the work of this thesis. These areas are
summarized in the following list.

1. DES Related
• What can we learn from other matrices associated with the DES BFs, e.g., nor-

malized Laplacian, signless Laplacian, incidence, etc.?

143

• What can be investigated with the energy spectrum of the BFs, i.e., the square of
the WT? Is there a relation between the energy spectrum and the cryptographic
properties?

• Can the inverse eigenvalue problem be applied here, i.e., can we deduce infor-
mation about the graph spectra from a family of matrices producing this graph?

• Can we find patterns in the number of random walks in the Cayley graphs?
• What is the energy of the Cayley graphs, i.e., the sum of the adjacency matrix

eigenvalues in absolute value, and can we determine a relation with the proper-
ties of the BFs? Can we determine a formula for the energy of the Cayley graph
for a BF on n variables?

2. Non-DES Related
• Apply spectral graph theoretic techniques to other block ciphers such as AES,

or even the combiner functions used in stream ciphers.
• Investigate relations between Ramanujan graphs and BFs used in cryptosys-

tems.
• What more can be done with the Laplacian spectra? If we bound the Laplacian

eigenvalues by known relations, how are the associated BFs affected?
• Can we determine a general formulaic relationship between the cryptographic

properties of any BF and the spectrum of its associated Cayley graph?
• Is there a relationship between the spectral gap of a Cayley graph and the non-

linearity of its associated BF?

144

APPENDIX: Thesis Code

This appendix displays some of the code used from Maple to help compute some of the
properties examined in this thesis. Potential users of this code should validate its execution
before implementation.

A.1 Adjacency Matrix Coding

> restart;

Build list of 2^6 input vectors as list of sequences

> a := [seq(ListTools[Reverse](convert(i+64,base,2)[1..-2]), i=0..63)];

Confirm list has 2^6 elements

> nops(a);

Test extraction from list

> a[12];

> a[32];

Test mod 2 addition on elements of a

> % + %% mod 2;

Assign truth table outputs to new sequence list; change as needed

> b := [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,1,0,1,1,1,

0,1,0,1,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,1,0,1,1,0,1];

Confirm list has 2^6 elements

> nops(b);

Test to extract i-th item from list

> a[64];a[4];b[2];b[4];

Create function/mapping from set a to set b

> for i from 1 to 64 do f(a[i]) := b[i]; od;

Test the function

> f(a[2]);f(a[4]);

Test bit operations

> a[12] + a[32] mod 2;

All possible XOR elements in set a

> for i from 1 to 63 do a[1] + a[1+i] mod 2;

145

f(%); od; printf("break here");

for i from 1 to 62 do a[2] + a[2+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 61 do a[3] + a[3+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 60 do a[4] + a[4+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 59 do a[5] + a[5+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 58 do a[6] + a[6+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 57 do a[7] + a[7+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 56 do a[8] + a[8+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 55 do a[9] + a[9+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 54 do a[10] + a[10+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 53 do a[11] + a[11+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 52 do a[12] + a[12+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 51 do a[13] + a[13+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 50 do a[14] + a[14+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 49 do a[15] + a[15+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 48 do a[16] + a[16+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 47 do a[17] + a[17+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 46 do a[18] + a[18+i] mod 2;

146

f(%); od; printf("break here");

for i from 1 to 45 do a[19] + a[19+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 44 do a[20] + a[20+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 43 do a[21] + a[21+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 42 do a[22] + a[22+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 41 do a[23] + a[23+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 40 do a[24] + a[24+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 39 do a[25] + a[25+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 38 do a[26] + a[26+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 37 do a[27] + a[27+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 36 do a[28] + a[28+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 35 do a[29] + a[29+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 34 do a[30] + a[30+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 33 do a[31] + a[31+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 32 do a[32] + a[32+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 31 do a[33] + a[33+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 30 do a[34] + a[34+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 29 do a[35] + a[35+i] mod 2;

147

f(%); od; printf("break here");

for i from 1 to 28 do a[36] + a[36+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 27 do a[37] + a[37+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 26 do a[38] + a[38+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 25 do a[39] + a[39+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 24 do a[40] + a[40+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 23 do a[41] + a[41+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 22 do a[42] + a[42+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 21 do a[43] + a[43+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 20 do a[44] + a[44+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 19 do a[45] + a[45+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 18 do a[46] + a[46+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 17 do a[47] + a[47+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 16 do a[48] + a[48+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 15 do a[49] + a[49+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 14 do a[50] + a[50+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 13 do a[51] + a[51+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 12 do a[52] + a[52+i] mod 2;

148

f(%); od; printf("break here");

for i from 1 to 11 do a[53] + a[53+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 10 do a[54] + a[54+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 9 do a[55] + a[55+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 8 do a[56] + a[56+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 7 do a[57] + a[57+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 6 do a[58] + a[58+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 5 do a[59] + a[59+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 4 do a[60] + a[60+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 3 do a[61] + a[61+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 2 do a[62] + a[62+i] mod 2;

f(%); od; printf("break here");

for i from 1 to 1 do a[63] + a[63+i] mod 2;

f(%); od; printf("break here");

A.2 PC Check Coding
> restart;
> a := [seq(ListTools[Reverse](convert(i+64,base,2)[1..-2]), i=0..63)];
Change as needed
> b := [0,0,1,0,0,0,0,1,1,1,1,0,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,
1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0,1,0,1,1];
Confirm 2^6 entries in each list
> nops(a);nops(b);
Add vector 001100 to every element in a mod 2;
evaluate resulting sum in function list
> for i from 1 to 64 do a[i] + [0,0,1,1,0,0] mod 2; f(%); od;

149

Compare original function value to PC check vector value
> for i from 1 to 64 do myvec[i] := f(a[i]) + f(a[i]+[0,0,1,1,0,0] mod 2) mod 2; od;
Count # of times "1" appears-->weight of resulting vector
> numboccur(L,1);

150

List of References

[1] S.F. Florkowski. Spectral graph theory of the hypercube. M.S. thesis, Dept. App. Math.,
Naval Postgraduate School, Monterey, CA, December 2008.

[2] J.B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, Reading, MA,
seventh edition, 2003.

[3] T.W. Hungerford. Abstract Algebra: An Introduction. Thomson Learning, Chicago, IL,
second edition, 1997.

[4] K.H. Rosen. Discrete Mathematics and its Applications. McGraw Hill, New York, NY,
seventh edition, 2012.

[5] R. Lidl and H. Niederreiter. Finite Fields (Encyclopedia of Mathematics and its
Applications), volume 20. Cambridge Univ. Press, New York, 2003.

[6] U.C. Merzbach and C.B. Boyer. A History of Mathematics. John Wiley and Sons,
Hoboken, NJ, third edition, 2011.

[7] I. Kleiner. From numbers to rings: The early history of ring theory. Elemente der
Mathematik, 53:18–35, 1998.

[8] S.J. Leon. Linear Algebra with Applications. Prentice Hall, Upper Saddle River, NJ,
eighth edition, 2010.

[9] B. Schneier. Applied Cryptography. John Wiley & Sons, New York, second edition, 1996.
[10] D.R. Stinson. Cryptography Theory and Practice. Chapman & Hall, New York, third

edition, 2006.
[11] C.H. Meyer and S.M. Matyas. Cryptography: A New Dimension in Computer Data

Security. John Wiley & Sons, New York, 1982.
[12] W. Trappe and L.C. Washington. Introduction to Cryptography with Coding Theory.

Prentice Hall, Upper Saddle River, NJ, second edition, 2006.
[13] C.P. Pfleeger and S.L. Pfleeger. Security in Computing. Prentice Hall, Upper Saddle River,

NJ, third edition, 2003.
[14] Top 500 supercomputer sites. “Tianhe-2 (MilkyWay-2)”, 2013.

http://www.top500.org/system/177999.
[15] “Block Ciphers”. lecture notes for MA 4570, Department of App. Math., July 2013.
[16] L. Brown. Cryptography and Network Security, Chapter 3, 2006.

https://app.box.com/shared/h164at4gsc.
[17] Information security stack exchange. “Why does aes encryption take more time than

decryption?”, 2013. http://security.stackexchange.com/questions/38055/
why-does-aes-encryption-take-more-time-than-decryption.

[18] Ç.K. Koç. CS178 Introduction to Cryptography, 2011.
http://cs.ucsb.edu/~koc/cs178/docs/05-modes/.

151

[19] R.R. Jueneman. Analysis of certain aspects of output-feedback mode. In D. Chaum,
editor, Advances in Cryptology: Proceedings of CRYPTO 82, pp. 99–127. Perseus, 1983.

[20] J.Y. Chouinard. Notes on the data encryption standard (DES), Sept. 2002.
http://www.csi.uottawa.ca/~chouinar/Handout_CSI4138_DES_2002.pdf.

[21] D. Coppersmith. The data encryption standard (DES) and its strength against attacks.
IBM J. Res. & Dev., 38:243–250, May 1994.

[22] A. Kak. Lecture 3: Block ciphers and the data encryption standard, February 2013.
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture3.pdf.

[23] W.G. Barker. Introduction to the analysis of the data encryption standard (DES),
volume 55 of A Cryptographic Series. Aegean Park Press, Laguna Hills, CA, 1991.

[24] Data encryption standard. Federal Information Processing Standards Publication 46,
January 1977.

[25] Data encryption standard. Federal Information Processing Standards Publication 46-2,
January 1988.

[26] Data encryption standard. Federal Information Processing Standards Publication 46-3,
October 1999.

[27] E. F. Brickell et al. Structure in the S-Boxes of the DES. In Adv. in Crypt. - CRYPTO ’86,
volume 263, pp. 3–8, 1987.

[28] E. Biham and A. Shamir. Differential cryptanalysis of the data encryption standard.
Springer-Verlag, New York, 1993.

[29] G.J. Simmons. Contemporary cryptology. IEEE Press, New York, 1992.
[30] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. J.

CRYPT., 4(1):3–72, 1991.
[31] M. Bellare and P. Rogaway. Block ciphers. Lecture Notes, March 2014.

cseweb.ucsd.edu/users/mihir/cse207/s-bc.pdf.
[32] M. Matsui. Linear cryptanalysis method for DES cipher. Adv. in

Crypt.—EUROCRYPT’93, 765:386–397, 1994.
[33] M. Matsui. The first experimental cryptanalysis of the data encryption standard. Adv. in

Crypt.—CRYPTO’94, 839:1–11, 1994.

[34] P. Junod. Linear cryptanalysis of DES. M.s. thesis, dept. c.s., École Polytechnique Fédŕale
de Lausanne, Lausanne, Switzerland, 2000.
http://crypto.junod.info/lincrypt.pdf.

[35] M. Davio et al. Analytical characteristics of the DES. In Advances in Cryptology, pp.
171–202. Springer, 1987.

[36] Y. Desmedt et al. Dependence of output on input in DES: small avalanche characteristics.
Advances in Cryptology—CRYPTO’84, 196:359–376, 1985.

[37] A. Shamir. On the security of DES. Advances in Cryptology—CRYPTO’85, 218:280–281,
1986.

152

[38] S. Burris. George Boole. The Stanford Encyclopedia of Philosophy, 2014.
http://plato.stanford.edu/archives/sum2014/entries/boole/.

[39] T.W. Cusick and P. Stănică. Cryptographic boolean functions and applications. Academic
Press, San Diego, CA, first edition, 2009.

[40] C. Carlet. Boolean functions for cryptography and error correcting codes. In Y. Crama
and P. L. Hammer, editors, Boolean models and methods in mathematics, computer
science, and engineering, chapter 8, pp. 257–397. Cambridge Univ. Press, New York, first
edition, 2010.

[41] A. Bernasconi and B. Codenotti. Spectral analysis of boolean functions as a graph
eigenvalue problem. IEEE transactions on computers, 48:345–351, 1999.

[42] W. Meier et al. Algebraic attacks and decomposition of boolean functions. In C. Cachin
and J. Camenisch, editors, Adv. in Crypt.-EUROCRYPT 2004, pp. 474–491. Springer,
New York, 2004.

[43] J.L. Shafer. An analysis of bent function properties using the transeunt triangle and the
SRC-6 reconfigurable computer. M.S. thesis, Dept. E. Eng., Naval Postgraduate
School, Monterey, CA, September 2009.

[44] J.L. Shafer et al. Enumeration of Bent Boolean Functions by Reconfigurable Computer.
In 2010 18th IEEE Ann. Int. Symp. on Field-Prog. Cust. Comp. Mach. (FCCM), pp.
265–272, May 2010.

[45] C. Carlet. On cryptographic complexity of boolean functions. In G. L. Mullen et al.,
editors, Finite Fields with Applications to Coding Theory, Cryptography, and Related
Areas, chapter 4, pp. 53–69. Springer, New York, first edition, 2002.

[46] A. Braeken. Cryptographic properties of boolean functions and s-boxes. PhD thesis,
Univ. of Leuven—KU Leuven, Leuven, Belgium, 2006.
http://www.cosic.esat.kuleuven.be/publications/thesis-129.pdf.

[47] P. Stănică and S.H. Sung. Boolean functions with five controllable cryptographic
properties. Designs, Codes and Cryptography, 31(2):147–157, 2004.

[48] C. Carlet. Vectorial boolean functions for cryptography. In Y. Crama and P. L. Hammer,
editors, Boolean models and methods in mathematics, computer science, and engineering,
chapter 9, pp. 398–472. Cambridge Univ. Press, New York, first edition, 2010.

[49] K. Kim et al. On generating cryptographically desirable substitutions. IEICE
transactions, 73(7):1031–1035, February 1990.

[50] C. Adams and S. Tavares. The structured design of cryptographically good s-boxes.
Journal of cryptology, 3(1):27–41, 1990.

[51] W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In J. J.
Quisquater and J. Vandewalle, editors, Advances in cryptology —EUROCRYPT ’89,
volume 434 of Lecture notes in computer science, pp. 549–562. Springer, Berlin,
Germany, 1990.

153

[52] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic
applications. IEEE transactions on information theory, 30(5):776–780, September 1984.

[53] N. Petrakos. Cube-type algebraic attacks on wireless encryption protocols. M.S. thesis,
Dept. C. S., Naval Postgraduate School, Monterey, CA, September 2009.

[54] B. Chor et al. The bit extraction problem or t-resilient functions. In Proc. of the 26th Ann.
Symp. on Found. of Comp. Sci., pp. 396–407. Washington D.C., 1985.

[55] N.T. Courtois. Higher order correlation attacks, XL algorithm and cryptanalysis of
toyocrypt. In P. Lee and C. Lim, editors, Inf. sec. and crypt. —ICISC 2002, volume 2587
of Lecture notes in computer science, pp. 182–199. Springer, Berlin, Germany, 2003.

[56] N.T. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback. In
E. Biham, editor, Adv. in crypt. —EUROCRYPT 2003, volume 2656 of Lecture notes in
computer science, pp. 345–359. Springer, Berlin, Germany, 2003.

[57] H. Feistel. Cryptography and computer privacy. Scientific american, 2280(5):15–23, May
1973.

[58] A.F. Webster and S.E. Tavares. On the design of s-boxes. In H. C. Williams, editor, Adv.
in cryp. —CRYPTO ’85, volume 218 of Lecture notes in computer science, pp. 523–534.
Springer, Berlin, Germany, 1986.

[59] K. Kim. Construction of DES-like s-boxes based on boolean functions satisfying the
SAC. In H. Imai et al., editors, Adv. in crypt. —ASIACRYPT ’91, volume 793 of Lecture
notes in computer science, pp. 59–72. Springer, Berlin, Germany, 1993.

[60] K. Kim et al. A recursive construction method of s-boxes satisfying strict avalanche
criterion. In A. J. Menezes and S. A. Vanstone, editors, Adv. in crypt. —CRYPTO ’90,
volume 537 of Lecture notes in computer science, pp. 565–574. Springer, Berlin,
Germany, 1991.

[61] B. Preneel et al. Propagation characteristics of boolean functions. In I. Damgard, editor,
Adv. in crypt. —EUROCRYPT ’90, volume 473 of Lecture notes in computer science, pp.
161–173. Springer, Berlin, Germany, 1990.

[62] L.R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor, Fast soft.
encr., volume 1008 of Lecture notes in computer science, pp. 196–211. Springer, Berlin,
Germany, 1995.

[63] C. Carlet. On the algebraic thickness and non-normality of Boolean functions. In IEEE
information theory workshop, 2003, pp. 147–150. Paris, France, April 2003.

[64] C. Carlet. On the degree, nonlinearity, algebraic thickness, and nonnormality of boolean
functions, with developments on symmetric functions. IEEE transactions on information
theory, 50(9):2178–2185, September 2004.

[65] X. Zhang and Y. Zheng. GAC—the criterion for global avalanche characteristics of
cryptographic functions. J. Univ. Comp. Sci., 1(5):320–337, May 1995.

154

[66] M. Zhang and A. Chan. Maximum correlation analysis of nonlinear s-boxes in stream
ciphers. In M. Bellare, editor, Adv. in crypt. —CRYPTO 2000, volume 1880 of Lecture
notes in computer science, pp. 501–514. Springer, Berlin, Germany, 2000.

[67] X. Zhang and Y. Zheng. The nonhomomorphicity of boolean functions. In S. Tavares and
H. Meijer, editors, Selected areas in crypt., volume 1556 of Lecture notes in computer
science, pp. 280–295. Springer, Berlin, Germany, 1999.

[68] O.S. Rothaus. On bent functions. J. of Combinatorial Theory, 20:300–305, 1976.
[69] R.L. McFarland. A family of difference sets in non-cyclic groups. J. of Combinatorial

Theory, 15:1–10, 1973.
[70] J. Dillon. Elementary hadamard difference sets. PhD thesis, Univ. of Maryland, College

Park, 1974.
[71] P. Langevin et al. On the number of bent functions with 8 variables, 2006.

http://www.liafa.jussieu.fr/~yunes/bfca/bfca06/slides/
langevin-rabizonni-veron-zanotti.pdf.

[72] A. Bernasconi et al. On the Fourier Analysis of Boolean Functions, 1996. Preprint.
[73] R. Forré. The strict avalanche criterion: spectral properties of boolean functions and an

extended definition. In S. Goldwasser, editor, Advances in cryptology —CRYPTO ’88,
volume 403 of Lecture notes in computer science, pp. 450–468. Springer, Berlin,
Germany, 1990.

[74] G. Chartrand and P. Zhang. A First Course in Graph Theory. Dover, Mineola, NY, 2012.
[75] L.R. Foulds. Graph Theory Applications, volume 1 of Universitext. Springer, New York,

1992.
[76] N. Biggs. Algebraic Graph Theory. Cambridge Univ. Press, New York, 1974.

[77] D.M. Cvetkovíc et al. Spectra of Graphs. Academic Press, New York, 1979.

[78] S.K. Butler. personal correspondence, 2014.
[79] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in

Mathematics. American Mathematical Society, Providence, RI, second edition, 1997.
[80] B. Mohar. The Laplacian Spectrum of Graphs. In Y. Alavi et al., editors, Graph Th.,

Combin., and App., volume 2, pp. 871–898, 1991.
[81] A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Universitext. Springer, New York,

2012.
[82] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in

Mathematics. Springer, New York, 2001.
[83] D. Cvetkovíc et al. An Introduction to the Theory of Graph Spectra, volume 75 of London

Mathematical Society Student Texts. Cambridge Univ. Press, New York, 2010.
[84] K.C. Das. The Laplacian Spectrum of a Graph. Comp. and Math. with App., 48:715–724,

2004.

155

[85] L. Lovász. Eigenvalues of Graphs, November 2007.
http://www.cs.elte.hu/~lovasz/eigenvals-x.pdf.

[86] P.V. Mieghem. Graph Spectra for Complex Networks. Cambridge Univ. Press, New York,
2011.

[87] E.K. Çetinkaya et al. Topology Connectivity Analysis of Internet Infrastructure Using
Graph Spectra. In 4th Int. Congr. on Ultra Mod. Tele. and Cont. Sys. and Work. (ICUMT),
pp. 752–758, October 2012.

[88] A. Banerjee and J. Jost. Spectral Characterization of Network Structures and Dynamics.
In N. Ganguly et al., editors, Dyn. On and Of Compl. Net., Modeling and Simulation in
Science, Engineering and Technology, pp. 117–132. Birkhäuser Boston, 2009.

[89] A. Lubotzky et al. Ramanujan Graphs. Combinatorica, 8(3):261–277, 1988.
[90] M. Fielder. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 23

(2):298–305, 1973.
[91] R. Merris. Laplacian Matrices of Graphs: A Survey. Linear Algebra and its Applications,

197-198:143–176, 1994.
[92] N. Alon and V. D. Milman. λ1, Isoperimetric Inequalities for Graphs, and

Superconcentrators. J. of Combinatorial Theory, B 38:73–88, 1985.
[93] S. Butler. Spectral Graph Theory: Cheeger Constants and Discrepancy. In Center for

Combinatorics. Nankai, China, 2006.
[94] A. Nilli. On the Second Eigenvalue of a Graph. Discrete Mathematics, 91:207–210, 1991.
[95] V. Nikiforov. Some Inequalities for the Largest Eigenvalue of a Graph. Comb. Probab.

Comput., 11(2):179–189, March 2002.
[96] H.S. Wilf. The Eigenvalues of a Graph and its Chromatic Number. J. London Math. Soc.,

42:330–332, 1967.
[97] V. Nikiforov. Chromatic Number and Spectra Radius. Linear Algebra and its

Applications, 426:810–814, 2007.
[98] S. Butler. Spectral Graph Theory: Three Common Spectra. In Center for Combinatorics.

Nankai, China, 2006.
[99] S. Shrikhande and Bhagwandas. Duals of Incomplete Block Designs. J. Indian Stat.

Assoc., 3:30–37, 1965.
[100] B. Arazi. Some Properties of Hadamard Matrices Generated Recursively by Kronecker

Products. Linear Algebra and its Applications, 25:27–39, 1979.
[101] L. Babai. Spectra of Cayley Graphs. J. of Combinatorial Theory, 27:180–189, 1979.
[102] L. Lovász. Spectra of Graphs with Transitive Groups. Period. Math. Hungar., 6:191–196,

1975.
[103] A. Dharwadker. The Independent Set Algorithm. [Executable], 2006.
[104] J. Fox. Eigenvalues and Expanders, 2009.

http://math.mit.edu/~fox/MAT307-lecture22.pdf.

156

[105] S. Hoory et al. Expander Graphs and their Applications. Bulletin of the Amer. Math.
Society, 43(4):439–561, 2006.

[106] J. Rosenthal and P. O. Vontobel. Constructions of LDPC codes Using Ramanujan Graphs
and Ideas from Margulis. In in Proc. of the 38th Allerton Conf. on Comm., Contr., and
Comp., pp. 248–257, 2000.

157

THIS PAGE INTENTIONALLY LEFT BLANK

158

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

159

